Panasonic

Motion Controller

GM1 Series
 Reference Manual

Instruction Edition
(MEMO)

Introduction

Thank you for purchasing a Panasonic product. Before you use the product, please carefully read through the installation instructions and the manuals, and understand them in detail to use the product properly.

Types of Manuals

- This manual describes ladder instructions, function instructions, and function block instructions.
- There are different types of manuals for the GM1 series, as listed below. Refer to the appropriate manual according to your need.
- These manuals can be downloaded from our website: https://industrial.panasonic.com/ac/e/ motor/motion-controller/mc/gm1/index.jsp

Manuals for GM1 series

Manual name	Manual code	Description
GM1 Controller RTEX User's Manual (Setup)	WUME- GM1RTXSU	Explains wiring between the GM1 and its peripheral devices, installation method, and operation check method.
GM1 Controller RTEX User's Manual (Operation)	WUME- GM1RTXOP	Explains how to use GM Programmer and PANATERM Lite for GM, set up each function, create projects, and perform other operations.
GM1 Series Reference Manual (Hardware)	WUME-GM1H	Explains the functions and performance of each GM1 unit.
GM1 Series Reference Manual (Instruction)	WUME-GM1PGR	Explains the specifications of each instruction that can be used with the GM1 Series.

Copyright / Trademarks

- The copyright of this manual is owned by Panasonic Corporation.
- Unauthorized reproduction of this manual is strictly prohibited.
- Windows is a registered trademark of Microsoft Corporation in the U.S. and other countries.
- Ethernet is a registered trademark of Fuji Xerox Co., Ltd. and Xerox Corporation.
- EtherNet/IP is a registered trademark of ODVA (Open DeviceNet Vendor Association).
- SDHC and SD logos are trademarks of LLC.
- Other company and product names are trademarks or registered trademarks of their respective companies.

Note on the Software

The "PANATERM Lite for GM" is not incorporated into the GM Programmer as of January 2021.
The features will be added when the GM Programmer is upgraded.
(MEMO)

Table of Contents

1 List of Instructions 1-1
1.1 List of Ladder Instructions 1-2
1.2 List of Function Instructions 1-3
1.3 List of Function Block Instructions 1-7
1.3.1 Basic Instructions 1-7
1.3.2 Motion Control Function Blocks (Single Axis Control) 1-8
1.3.3 Motion Control Function Blocks (Synchronous Control) 1-10
1.3.4 Motion Control Function Blocks (Multi-axis Control) 1-10
1.3.5 Motion Control Function Blocks (Motion Communication Control) 1-11
1.3.6 Motion Control Function Blocks (Auxiliary Function) 1-11
1.3.7 Function Blocks (Others) 1-12
1.4 List of Function Block Instructions that Cannot Be Used with the GM1 1-18
2 Ladder Instructions 2-1
2.1 Ladder Instructions 2-2
2.1.1 NO Contact 2-2
2.1.2 NC Contact 2-3
2.1.3 Rising Edge Detection Contact 2-3
2.1.4 Falling Edge Detection Contact 2-4
2.1.5 Parallel NO Contact 2-5
2.1.6 Parallel NC Contact 2-6
2.1.7 Coil 2-7
2.1.8 Negated Coil 2-7
2.1.9 Set Coil 2-8
2.1.10 Reset Coil 2-9
3 Functions 3-1
3.1 Substitution Instruction 3-3
3.1.1 MOVE (Substitution) 3-3
3.2 Arithmetic Operation Instructions 3-4
3.2.1 ADD (Addition) 3-4
3.2.2 SUB (Subtraction) 3-5
3.2.3 MUL (Multiplication) 3-6
3.2.4 DIV (Division) 3-7
3.2.5 MOD (Remainder) 3-8
3.3 Boolean Operation Instructions 3-9
3.3.1 AND (Logical AND) 3-9
3.3.2 OR (Logical OR) 3-10
3.3.3 NOT (Negation) 3-10
3.3.4 XOR (Exclusive OR) 3-11
3.3.5 AND_THEN (Logical AND) 3-12
3.3.6 OR_ELSE (Logical OR) 3-13
3.4 Comparison Operation Instructions 3-15
3.4.1 EQ ("Equal" Comparison) 3-15
3.4.2 NE ("Not Equal" Comparison) 3-15
3.4.3 LT ("Less Than" Comparison) 3-16
3.4.4 LE ("Less Than or Equal" Comparison) 3-17
3.4.5 GT ("Greater Than" Comparison) 3-18
3.4.6 GE ("Greater Than Or Equal" Comparison) 3-19
3.5 Bit Shift Instructions 3-21
3.5.1 SHL (Shift Left) 3-21
3.5.2 SHR (Shift Right) 3-22
3.5.3 ROL (Rotate Left) 3-22
3.5.4 ROR (Rotate Right) 3-23
3.6 Selection Instructions 3-25
3.6.1 SEL (Binary Selector) 3-25
3.6.2 MUX (Multiplexer) 3-26
3.6.3 LIMIT (Limiter) 3-27
3.6.4 MAX (Maximum Value) 3-28
3.6.5 MIN (Minimum Value) 3-28
3.7 Numerical Operation Instructions 3-30
3.7.1 ABS (Absolute Value) 3-30
3.7.2 SQRT (Square Root) 3-30
3.7.3 LN (Natural Logarithm) 3-31
3.7.4 LOG (Common Logarithm) 3-32
3.7.5 EXP (Natural Exponent) 3-33
3.7.6 EXPT (Exponentiation) 3-33
3.7.7 SIN (Trigonometric Function Sine) 3-34
3.7.8 COS (Trigonometric Function Cosine) 3-35
3.7.9 TAN (Trigonometric Function Tangent) 3-36
3.7.10 ASIN (Trigonometric Function Arc Sine) 3-37
3.7.11 ACOS (Trigonometric Function Arc Cosine) 3-38
3.7.12 ATAN (Trigonometric Function Arc Tangent) 3-38
3.8 Data Type Conversion Instructions 3-40
3.8.1 "Type 1"_TO_"Type 2" ("Type 1">"Type 2" Conversion) 3-40
3.8.2 TRUNC (Real Number to DINT Conversion) 3-41
3.8.3 TRUNC_INT (Real Number to INT Conversion) 3-41
3.9 Character string instructions 3-43
3.9.1 LEN (Length of a Character String) 3-43
3.9.2 LEFT (Extracting Characters from the Left End) 3-43
3.9.3 RIGHT (Extracting Characters from the Right End) 3-44
3.9.4 MID (Extracting Characters from the Specified Position) 3-45
3.9.5 CONCAT (Concatenating Character Strings) 3-46
3.9.6 INSERT (Inserting a Character String) 3-47
3.9.7 DELETE (Deleting a Character String) 3-47
3.9.8 REPLACE (Replacing a Character String) 3-48
3.9.9 FIND (Search for Character String) 3-50
3.10 Other Instructions 3-51
3.10.1 SIZEOF (Get the Size) 3-51
3.10.2 ADR (Get the Address) 3-51
3.11 SD Memory Card Slot Instruction 3-53
3.11.1 SYS_GetSDCoverState (Get SD Card Cover Open / Close State) 3-53
3.11.2 SYS_GetSDAccessRdy (Get SD Card Access Ready State) 3-53
4 Function Blocks (Basic Instructions) 4-1
4.1 Timer Instructions 4-2
4.1.1 TON (Timer ON) 4-2
4.1.2 TOF (Timer OFF) 4-3
4.1.3 TP (Timer Pulse) 4-4
4.1.4 RTC (Realtime Clock) 4-6
4.2 Counter Instructions 4-7
4.2.1 CTU (Up Counter) 4-7
4.2.2 CTD (Down Counter) 4-8
4.2.3 CTUD (Up-down Counter) 4-9
4.3 Edge Detection Instructions 4-11
4.3.1 R_TRIG (Rising Edge Detection) 4-11
4.3.2 F_TRIG (Falling Edge Detection) 4-11
4.4 Bistable Circuit Instructions 4-13
4.4.1 SR (Set-priority Bistable Circuit) 4-13
4.4.2 RS (Reset-priority Bistable Circuit) 4-14
5 Motion Control Function Blocks (Single Axis Control) 5-1
5.1 Servo ON 5-2
5.1.1 MC_Power (Servo ON) 5-2
5.2 Home Return 5-4
5.2.1 PMC_Home (Home Return) 5-4
5.3 Control Switch 5-7
5.3.1 SMC_SetControllerMode (Control Mode Setting) 5-7
5.4 Stop 5-8
5.4.1 MC_Stop (Forced Stop) 5-8
5.4.2 MC_Halt (Halt) 5-9
5.5 JOG / Inching 5-10
5.5.1 MC_Jog (Jogging) 5-10
5.5.2 SMC_Inch (Inching) 5-11
5.6 Position Control 5-13
5.6.1 MC_MoveAbsolute (Absolute Value Positioning) 5-13
5.6.2 MC_MoveRelative (Relative Value Positioning) 5-14
5.6.3 MC_MoveAdditive (Target Position Change) 5-15
5.6.4 MC_MoveSuperlmposed (Superimposed positioning) 5-17
5.6.5 MC_PositionProfile (Position Profile Move) 5-19
5.6.6 Default Setting for Variables of the MC TP REF Type Structure 5-20
5.6.7 SMC_MoveContinuousAbsolute (Absolute Value Position Velocity Move) 5-22
5.6.8 SMC MoveContinuousRelative (Relative Value Position Velocity Move) 5-23
5.7 Velocity Control 5-25
5.7.1 MC_MoveVelocity (Velocity Control) 5-25
5.7.2 MC_VelocityProfile (Velocity Profile Movement) 5-26
5.7.3 MC_AccelerationProfile (Acceleration Profile Movement) 5-27
5.8 Torque Control 5-30
5.8.1 PMC_SetTorque (Torque Control) 5-30
6 Motion Control Function Blocks (Synchronous Control) 6-1
6.1 Cam Operation 6-2
6.1.1 MC_CamIn (Start Cam Operation) 6-2
6.1.2 MC_CamOut (Cancel Cam Operation) 6-5
6.1.3 MC_CamTableSelect (Select Cam Table) 6-6
6.1.4 SMC_GetTappetValue (Tappet Output). 6-8
6.2 Gear Operation 6-11
6.2.1 MC_GearIn (Start Gear Operation) 6-11
6.2.2 MC_GearInPos (Position Specified Gear Operation) 6-12
6.2.3 MC_GearOut (Cancel Gear Operation) 6-14
6.3 Phase Correction 6-16
6.3.1 MC_Phasing (Master Axis Phase Correction) 6-16
7 Motion Control Function Blocks (Multi-axis Control) 7-1
7.1 Interpolation Control 7-2
7.1.1 PMC_Interpolator2D (Two-dimensional Interpolation Control) 7-2
7.1.2 PMC_Interpolator3D (Three-dimensional Interpolation Control) 7-3
7.1.3 PMC_NCDecoder (CNC Table Conversion) 7-5
8 Motion Control Function Blocks (Motion Communication Control) 8-1
8.1 RTEX 8-2
8.1.1 Types of Data To Be Handled by AMP Function Blocks 8-2
8.1.2 RTEX_ClearAmpAlarm (Clear Amplifier Alarm) 8-2
8.1.3 RTEX_ReadAmpAlarm (Read Amplifier Alarm) 8-4
8.1.4 RTEX_ReadAmpState (Amplifier Alarm Status) 8-5
8.1.5 RTEX_ReadAmpData (Amplifier Monitor) 8-6
8.1.6 RTEX_ReadAmpParameter (Read Amplifier Parameter) 8-7
8.1.7 RTEX_WriteAmpParameter (Write Amplifier Parameter) 8-8
8.1.8 RTEX_ClearAmpMultiTurnData (Clear Amplifier Multi-turn Data) 8-9
8.1.9 RTEX_ClearAmpPositionalDeviation (Clear Amplifier Deviation Counter) 8-10
8.1.10 RTEX_ReadNot (Read NOT of Amplifier) 8-11
8.1.11 RTEX_ReadPot (Read POT of Amplifier) 8-11
8.1.12 RTEX_GetTrackingCommandError 8-12
9 Motion Control Function Blocks (Auxiliary Function) 9-1
9.1 Motion Auxiliary Function (Monitoring), 9-2
9.1.1 MC_ReadActualPosition (Read Current Position) 9-2
9.1.2 MC_ReadActualVelocity (Read Current Velocity) 9-2
9.1.3 PMC_ReadActualTorque (Read Current Torque) 9-3
9.1.4 MC_ReadStatus (Read Status) 9-4
9.1.5 SMC_InPosition (In-position Judgment) 9-6
9.1.6 SMC_ReadFBError (Read Oldest Error) 9-7
9.1.7 SMC_ClearFBError (Clear Oldest Error) 9-8
9.1.8 SMC_CheckAxisCommunication (Check Axis Communication Status) 9-8
9.1.9 SMC_CheckLimits (Check Exceeding Limits) 9-9
9.1.10 SMC_GetMaxSetAccDec (Measure Maximum Acceleration / Deceleration) 9-10
9.1.11 SMC_GetMaxSetVelocity (Measure Maximum Velocity) 9-11
9.1.12 SMC_GetTrackingError (Measure Tracking Error) 9-11
9.1.13 SMC_MeasureDistance (Measure Turnaround Travel Distance) 9-12
9.1.14 SMC_ReadSetPosition (Read Axis Set Position) 9-13
9.2 Motion Auxiliary Function (Change / Reset) 9-14
9.2.1 MC_Reset (Axis Error Reset) 9-14
9.2.2 MC_SetPosition (Change Current Position) 9-14
9.3 Motion Auxiliary Function (Other Functions) 9-16
9.3.1 PMC_ReadLatchPosition (Amplifier Latch Monitor) 9-16
9.3.2 PMC_StopLatchPosition (Stop Amplifier Latch) 9-18
9.3.3 MC_DigitalCamSwitch (Enable Digital Cam Switch) 9-21
9.3.4 SMC_BacklashCompensation (Compensate Backlash) 9-25
10 Other Function Blocks 10-1
10.1 COM Port (General-purpose Communication) 10-4
10.1.1 COM.Open (Open COM port) 10-4
10.1.2 COM.Close (Close COM Port) 10-6
10.1.3 COM.Read (Read COM Port) 10-7
10.1.4 COM.Write (Write COM Port) 10-8
10.1.5 COM.ERROR (Error ID) 10-8
10.2 COM port (Modbus COM) 10-10
10.2.1 IoDrvModbusComPort 10-10
10.2.2 IoDrvModbus.ModbusChannel(Start Sending Modbus Command) 10-10
10.2.3 IoDrvModbus.ModbusRequest (Modbus Request) 10-11
10.2.4 loDrvModbus.ModbusRequest 2 (Modbus Request 2) 10-12
10.2.5 IoDrvModbus.ModbusSlaveComPort 10-14
10.2.6 loDrvModbus.MB_ErrorCodes (Error Codes) 10-14
10.3 LAN port (loDrvEthernet) 10-16
10.3.1 loDrvEthernet 10-16
10.3.2 loDrvEthernet.IPARRAY_TO_INADDR (Array Type to Union Type) 10-16
10.3.3 loDrvEthernet.IPARRAY_TO_IPSTRING (Array Type to Character String Type) 10-17
10.3.4 loDrvEthernet.IPARRAY_TO_UDINT (Array Type to UDINT Type)10-17
10.3.5 IoDrvEthernet.IPSTRING_TO_UDINT (Character String Type to UDINT Type) 10-18
10.3.6 loDrvEthernet.UDINT_TO_IPARRAY (UDINT Type to Array Type)10-1810.3.7 loDrvEthernet.UDINT_TO_IPSTRING (UDINT Type to CharacterString Type)10-18
10.4 LAN Port (General-purpose Communication) 10-20
10.4.1 NBS.TCP_Client (Connect to TCP Client) 10-20
10.4.2 NBS.TCP_Connection (Connect TCP) 10-20
10.4.3 NBS.TCP_Read (Receive TCP Data) 10-21
10.4.4 NBS.TCP_Server (Connect TCP Server) 10-22
10.4.5 NBS.TCP_Write (Send TCP Data) 10-23
10.4.6 NBS.UDP_Peer (Open UDP Port) 10-23
10.4.7 NBS.UDP_Receive (Receive UDP Data) 10-24
10.4.8 NBS.ERROR (Error Code) 10-25
10.4.9 NBS.UDP_Send (Send UDP Data) 10-26
10.5 LAN Port (Modbus TCP) 10-28
10.5.1 loDrvModbusTCP 10-28
10.5.2 loDrvModbusTCP.ModbusChannel (Start Sending Modbus Command) 10-28
10.5.3 loDrvModbusTCP.ModbusRequest (Modbus Request) 10-29
10.5.4 loDrvModbusTCPSlave 10-30
10.5.5 loDrvModbus.MB_ErrorCodes (Error Codes) 10-31
10.6 LAN Port (EtherNet/IP) 10-33
10.6.1 loDrvEtherNetIP (EtherNet/IP Scanner Device) 10-33
10.6.2 RemoteAdapter (Remote Adapter Device) 10-34
10.6.3 loDrvEtherNetIPAdapter (EtherNet/IP adapter device) 10-36
10.6.4 Module (EtherNet/IP Module Device) 10-37
10.6.5 Apply_Attributes (Apply_Attributes Service) 10-38
10.6.6 Generic_Service (Generic Service Execution) 10-39
10.6.7 Get_Attribute_Single (Inquire Specific Attributes of a Specific Instance) 10-40
10.6.8 Get_Attributes_All (Inquire All Attributes of a Specific Instance) 10-41
10.6.9 Set_Attribute_Single (Set Specific Attributes of a Specific Instance) 10-42
10.6.10 Set_Attributes_All (Set All Attributes of a Specific Instance) 10-43
10.6.11 NOP (NOP Service) 10-44
10.6.12 Reset (Reset Service) 10-45
10.6.13 Start (Start Service) 10-45
10.6.14 Stop (Stop Service) 10-46
10.6.15 ENIP.ERROR (Message Service Instruction Error Code) 10-47
10.6.16 ENIP.CIPClass (Service Class Code) 10-49
10.7 SD Card Operation (File Operation) 10-52
10.7.1 FILE.Open (Open File) 10-52
10.7.2 FILE.Close (Close File) 10-53
10.7.3 FILE.Read (Read File) 10-53
10.7.4 FILE.Write (Write File) 10-54
10.7.5 FILE.Flush (Flush File) 10-55
10.7.6 FILE.Copy (Copy File) 10-56
10.7.7 FILE.Rename (Rename File) 10-57
10.7.8 FILE.Delete (Delete File) 10-58
10.7.9 FILE.EOF (End of File) 10-58
10.7.10 FILE.GetAttribute (Get File Attribute) 10-59
10.7.11 FILE.GetPos (Get File Offset) 10-60
10.7.12 FILE.GetSize (Get File Size) 10-60
10.7.13 FILE.GetTime (Get File Update Time) 10-61
10.7.14 FILE.SetPos (Set File Offset) 10-62
10.7.15 FILE.ERROR (Error ID) 10-62
10.8 SD Card Operation (Directory Operation) 10-64
10.8.1 FILE.DirCreate (Create Directory) 10-64
10.8.2 FILE.DirOpen (Open Directory) 10-64
10.8.3 FILE.DirClose (Close Directory) 10-65
10.8.4 FILE.DirCopy (Copy Directory) 10-66
10.8.5 FILE.DirRename (Rename Directory) 10-67
10.8.6 FILE.DirRemove (Delete Directory) 10-67
10.8.7 FILE.DirList (Directory List) 10-68
10.9 Clock Setting 10-70
10.9.1 SYS_GetTime (Get Time) 10-70
10.9.2 SYS_SetTime (Set Time) 10-70
10.9.3 SYS_GetTimezone (Get Time Zone Information) 10-71
10.9.4 SYS_SetTimezone (Set Time Zone Information) 10-71
10.9.5 SYS_DateConcat (Convert from UINT Type to DATE Type) 10-72
10.9.6 SYS_DateSplit (Convert from DATE Type to UINT Type) 10-73
10.9.7 SYS_DTConcat (Convert from UINT Type to DT Type) 10-73
10.9.8 SYS_DTSplit (Convert from UINT Type to DT Type) 10-74
10.9.9 SYS_GetDayOfWeek (Get Day of the Week) 10-75
10.9.10 SYS_TODConcat (Convert from UINT Type to TOD Type) 10-75
10.9.11 SYS_TODSplit (Convert from TOD Type to UINT Type) 10-76
10.9.12 ERROR (Clock Instruction Error Code) 10-77
10.10 System Data 10-78
10.10.1 SYS_GetSystemError (Get System Error) 10-78
11 Reference Information 11-1
11.1 Motion Errors (SMC_ERROR Type) 11-2
11.1.1 Error Check Method 11-2
11.1.2 SMC_ERROR 11-3
11.2 RTEX communication error 11-11
11.2.1 RTEX Error ID 11-11
11.2.2 Alarm Codes 11-14
11.2.3 Warning Codes 11-18
11.3 List of AMP Parameters 11-21
11.3.1 Class 0: Basic Setting 11-21
11.3.2 Class 1: Gain Adjustment 11-21
11.3.3 Class 2: Vibration Suppression Function 11-22
11.3.4 Class 3: Speed, Torque Control, Full-closed Control 11-23
11.3.5 Class 4: I/O Monitor Setting 11-24
11.3.6 Class 5: Enhancing Setting 11-25
11.3.7 Class 6: Special Setting 1 11-27
11.3.8 Class 7: Special Setting 2 11-29
11.3.9 Class 8: Special Setting 3 11-31
11.4 Monitor Commands 11-32
(MEMO)

1 List of Instructions

1.1 List of Ladder Instructions 1-2
1.2 List of Function Instructions 1-3
1.3 List of Function Block Instructions 1-7
1.3.1 Basic Instructions 1-7
1.3.2 Motion Control Function Blocks (Single Axis Control) 1-8
1.3.3 Motion Control Function Blocks (Synchronous Control) 1-10
1.3.4 Motion Control Function Blocks (Multi-axis Control) 1-10
1.3.5 Motion Control Function Blocks (Motion Communication Control) 1-11
1.3.6 Motion Control Function Blocks (Auxiliary Function) 1-11
1.3.7 Function Blocks (Others) 1-12
1.4 List of Function Block Instructions that Cannot Be Used with the GM1 1-18

1.1 List of Ladder Instructions

1.1 List of Ladder Instructions

The following table lists contact and coil ladder instructions that can be used in ladder diagram programs for GM Programmer.

Name	Code	Description	Page		
NO contact	$-\sqrt{-}$	This instruction outputs a BOOL-type input from the left to the right. If the variable of the contact is TRUE, then the input value from the left is output. If the variable of the contact is FALSE, then FALSE is output.	"P.2-2"		
NC contact	$\sqrt{1 / F}$	This instruction outputs the negated value of the BOOL-type input from the left to the right. If the variable of the contact is TRUE, then FALSE is output. If the variable of the contact is FALSE, then the input value from the left is output.	"P.2-3"		
Rising edge detection	$\forall P \mathbb{F}$	When a rising edge is detected in the BOOL-type input from the left, TRUE is output for one cycle only.	"P.2-3"		
Falling edge detection	$f \mathrm{~N}$	When a falling edge is detected in the BOOL-type input from the left, TRUE is output for one cycle only	"P.2-4"		
Parallel NO contact	-	NO contacts can be wired in parallel. The contacts wired in parallel are treated as OR logic. If the output of one or more contacts is TRUE, TRUE is output.	"P.2-5"		
Parallel NC contact	-	NC contacts can be wired in parallel. The contacts wired in parallel are treated as OR logic. If the output of one or more contacts is TRUE, TRUE is output.	"P.2-6"		
Coil	$-\\| \\|$	A BOOL-type input from the left can be saved. If the input is TRUE, then TRUE is saved. If the input is FALSE, then FALSE is saved.	"P.2-7"		
Negated coil	$-(/)$	The negated value of the BOOL-type input from the left can be saved. If the input is TRUE, then FALSE is saved. If the input is FALSE, then TRUE is saved.	"P.2-7"		
Set coil	$-\\| \mathrm{S})$	If the BOOL-type input from the left becomes TRUE, TRUE is saved. It can be used together with the reset coil.	"P.2-8"		
Reset coil	$-(\mathrm{R})$	If the BOOL-type input from the left becomes TRUE, FALSE is saved. It can be used together with the set coil.	"P.2-9"		

1.2 List of Function Instructions

This section provides lists of the functions used by the GM Programmer. These functions can be used without declaring them with variables.

- Substitution instruction

Name	Function	Description	Page
MOVE	Substitution	Substitutes the input argument values with the output argument.	"P.3-3"

- Arithmetic operation instructions

Name	Function	Description	Page
ADD	Addition	Adds the input arguments.	"P.3-4"
SUB	Subtraction	Subtracts the input arguments.	"P.3-5"
MUL	Multiplication	Multiplies the input arguments.	"P.3-6"
DIV	Division	Divides the input arguments.	"P.3-7"
MOD	Mod	Outputs the remainder of the input argument.	"P.3-8"

Boolean operation instructions

Name	Function	Description	Page
AND	Logical AND	Outputs the logical AND of the input arguments.	"P.3-9"
OR	Logical OR	Outputs the logical OR of the input arguments.	"P.3-10"
XOR	Exclusive OR	Outputs the Exclusive OR of the input arguments.	"P.3-11"
NOT	Negation	Outputs the negation of the input argument.	"P.3-10"
AND_THE N	Logical AND	Outputs the logical AND of the input arguments.	"P.3-12"
OR_ELSE	Logical OR	Outputs the logical OR of the input arguments.	"P.3-13"

- Comparison operation instructions

Name	Function	Description	Page
EQ	"Equal" comparison	Compares the two input arguments and, if they are equal to each other, outputs TRUE.	"P.3-15"
NE	"Not Equal" comparison	Compares the two input arguments and, if they are not equal to each other, outputs TRUE.	"P.3-15"
LT	"Less Than" comparison	Compares the two input arguments and, if the first argument is less than the second argument, outputs TRUE.	"P.3-16"
LE	"Less Than or Equal" comparison	Compares the two input arguments and, if the first argument is less than the second argument or equal, outputs TRUE.	"P.3-17"
GT	"Greater Than" comparison	Compares the two input arguments and, if the first argument is greater than the second argument, outputs TRUE.	"P.3-18"

1.2 List of Function Instructions

Name	Function	Description	Page
GE	"Greater Than Or Equal" comparison	Compares the two input arguments and, if the first argument is greater than the second argument or equal, outputs TRUE.	"P.3-19"

■ Bit shift instructions

Name	Function	Description	Page
SHL	Shift left	Shifts the input argument to the left by the specified number of bits. Inserts "0" from the least significant bit to the specified bit and outputs the data.	"P.3-21"
SHR	Shift right	Shifts the input argument to the right by the specified number of bits. Inserts "0" from the most significant bit to the specified bit and outputs the data.	"P.3-22"
ROL	Rotate left	Shifts the input argument to the left by the specified number of bits. Inserts the value in excess from the most significant bit into the data starting from the least significant bit and outputs the data.	"P.3-22"
ROR	Rotate right	Shifts the input argument to the right by the specified number of bits. Inserts the value in excess from the least significant bit into the data starting from the most significant bit and outputs the data.	"P.3-23"

Selection instructions

Name	Function	Description	Page
SEL	Binary selector	Outputs "IN0" when the input argument G is FALSE and "IN1" when the input argument G is TRUE.	"P.3-25"
MUX	Multiplexer	Outputs the input argument value depending on the input argument K $(0,1,2, \ldots)$.	"P.3-26"
LIMIT	Limiter	Limits the value of the input argument IN between the input arguments MN and MX and outputs the data.	"P.3-27"
MAX	Maximum value	Outputs the maximum value of the input argument.	"P.3-28"
MIN	Minimum value	Outputs the minimum value of the input argument.	"P.3-28"

- Numerical operation instructions

Name	Function	Description	Page
ABS	Absolute value	Outputs the absolute value.	"P.3-30"
SQRT	Square root	Outputs the the square root (\downarrow) of a number.	"P.3-30"
LN	Natural logarithm	Outputs the natural logarithm $\left(\log _{\mathrm{e}} \mathrm{X}\right)$ of a number.	"P.3-31"
LOG	Common logarithm	Outputs the common logarithm $\left(\log _{10} \mathrm{X}\right)$ of a number.	"P.3-32"
EXP	Natural exponent	Outputs the natural exponent $\left(e^{\mathrm{X}}\right)$ of a number.	"P.3-33"
EXPT	Exponentiation	Outputs the exponentiation of a number $\left(a^{n}\right)$.	"P.3-33"
SIN	Trigonometric function (sine)	Outputs the result of the sine function calculation.	"P.3-34"
COS	Trigonometric function (cosine)	Outputs the result of the cosine function calculation.	"P.3-35"

Name	Function	Description	Page
TAN	Trigonometric function (tangent)	Outputs the result of the tangent function calculation.	"P.3-36"
ASIN	Trigonometric function (arc sine)	Outputs the result of the arc sine function calculation.	"P.3-37"
ACOS	Trigonometric function (arc cosine)	Outputs the result of the arc cosine function calculation.	"P.3-38"
ATAN	Trigonometric function (arc tangent)	Outputs the result of the arc tangent function calculation.	"P.3-38"

Data type conversion instructions

Name	Function	Description	Page
<Type 1>_TO_<Type 2>	Data type conversion	Converts type 1 input argument to type 2.	"P.3-40"
TRUNC	Data type conversion	Changes the real number to the DINT-type data.	"P.3-41"
TRUNC_INT	Data type conversion	Changes the real number to the INT-type data.	"P.3-41"

- Character string instructions

The standard library is required.

Name	Function	Description	Page
LEN	Length of a character string	Outputs the length of a character string.	"P.3-43"
LEFT	Extracting characters from the left end	Extracts a character string consisting of the specified number of characters from the left of the character string.	"P.3-43"
RIGHT	Extracting characters from the right end	Extracts a character string consisting of the specified number of characters from the right of the character string.	"P.3-44"
MID	Extracting characters from the specified position	Extracts a character string consisting of the specified number of characters from the specified position of the character string.	"P.3-45"
CONCAT	Concatenating character strings	Concatenates two character strings.	"P.3-46"
INSERT	Inserting a character string	Inserts another character string into the specified position of one character string.	"P.3-47"
DELETE	Deleting a character string	Deletes a character string consisting of the specified number of characters from the specified position of the character string.	"P.3-47"
REPLACE	Replacing a character string	Replaces a character string, consisting of the specified number of characters from the specified position of the character string, with another character string.	"P.3-48"
FIND	Search for a character string	Searches for a specified character string in the character strings and outputs the position.	"P.3-50"

1.2 List of Function Instructions

■ Other instructions

Name	Function	Description	Page
SIZEOF	Get the size	Outputs the size (in units of byte) of the input argument.	"P.3-51"
ADR	Get the address	Outputs the address of the input argument.	"P.3-51"

SD memory card slot instruction

Name	Function	Description	Page
SYS_GetS DCoverStat e	Get SD card cover open / close state	Gets an open / close state of the card cover for the SD memory card slot.	"P.3-53"
SYS_GetS DAccessRd y	Get SD card access ready state	Gets the state whether an access to the SD memory card is allowed.	"P.3-53"

1.3 List of Function Block Instructions

This section provides lists of the function blocks used by the GM Programmer. These function blocks can be used with declaring the instances with variables.

1.3.1 Basic Instructions

Timer instructions

Name	Function	Description	Page
TON	Timer ON	Starts the timer when the input argument changes from FALSE to TRUE and, after an elapse of the specified time, the output argument outputs TRUE.	"P.4-2"
TOF	Timer OFF	Starts the timer when the input argument changes from TRUE to FALSE and, after an elapse of the specified time, the output argument outputs FALSE.	"P.4-3"
TP	Timer pulse	Starts the timer when the input argument changes from FALSE to TRUE until the specified time elapses. Outputs TRUE to the output argument while the timer keeps counting.	"P.4-4"
RTC	Realtime clock	Starts counting time from the specified date and time when the input argument changes from FALSE to TRUE. Outputs TRUE to the output argument while the clock keeps counting time.	"P.4-6"

- Counter instructions

Name	Function	Description	Page
CTU	Up counter	Starts incrementing the counter value at the rising edge of the input argument CU and, after counting the specified number of count values, outputs TRUE.	"P.4-7"
CTD	Down counter	Starts decrementing from the specified number of count value at the rising edge of the input argument CD. Outputs TRUE when it reaches 0.	"P.4-8"
CTUD	Up-down counter	Starts incrementing the counter value at the rising edge of the input argument CU and, after counting the specified number of count values, outputs TRUE. Starts decrementing the counter value at the rising edge of the input argument CD and, when it reaches 0, outputs TRUE.	"P.4-9"

Edge detection instructions

Name	Function	Description	Page
R_TRIG	Rising edge detection	Outputs TRUE for one cycle only when detecting a rising edge.	"P.4-11"
F_TRIG	Falling edge detection	Outputs TRUE for one cycle only when detecting a falling edge.	"P.4-11"

1.3 List of Function Block Instructions

- Bistable circuit instructions

Name	Function	Description	Page
SR	Set-priority bistable circuit	If the input argument SET1 is TRUE, outputs TRUE. If the input argument RESET is TRUE, outputs FALSE. If both SET1 and RESET1 are TRUE, outputs TRUE	"P.4-13"
RS	Reset-priority bistable circuit	If the input argument SET1 is TRUE, outputs TRUE. If the input argument RESET is TRUE, outputs FALSE. If both SET1 and RESET1 are TRUE, outputs FALSE.	"P.4-14"

1.3.2 Motion Control Function Blocks (Single Axis Control)

Servo ON

Name	Function	Description	Page
MC_Power	Servo ON	Sets the axis to the servo ON state to be ready for operation.	"P.5-2"

Home return

Name	Function	Description	Page
PMC_Home	Home return	Performs home return operation on the axis. Uses the home return function of the amplifier.	"P.5-4"

- Control switch

Name	Function	Description	Page
SMC_SetControllerMode	Control mode setup	Sets up the control mode for controlling the position, velocity, and torque.	"P.5-7"

- Stop

Name	Function	Description	Page
MC_Stop	Forced stop	Causes the axis to make a deceleration stop. After stopping, the axis remains stopped while Execute is TRUE.	"P.5-8"
MC_Halt	Stop	Causes the axis to make a deceleration stop. After the axis is stopped or while the axis is being decelerated, other motion instructions can be executed.	"P.5-9"

JOG / Inching

Name	Function	Description	Page
MC_Jog	Jogging	Causes the axis to keep traveling in a forward or reverse direction at a	"P.5-10"

Name	Function	Description	Page
		constant velocity while the input is TRUE.	
SMC_Inch	Inching	Causes the axis to travel in a forward or reverse direction for a specified relative distance when the input turns TRUE.	"P.5-11"

- Position control

Name	Function	Description	Page
MC_MoveAbsolute	Absolute value positioning	Causes the axis to travel to a position specified as an absolute position.	"P.5-13"
MC_MoveRelative	Relative value positioning	Causes the axis to travel to a position specified as a relative position.	"P.5-14"
MC_MoveAdditive	Change target position	Adds a relative distance to the target position of the immediately preceding instruction.	"P.5-15"
MC_MoveSuperlmposed	Superimposed positioning	Adds a relative distance, a velocity, an acceleration, and a deceleration to the operations of the immediately preceding instruction.	"P.5-17"
MC_PositionProfile	Position profile move	Causes the axis to operate according to the profile data that consists of a combination of position and time.	"P.5-19"
SMC_MoveContinuousAbsol ute	Absolute value position velocity move	Executes absolute value positioning and, after the axis reaches the target position, causes the axis to keep moving at a specified velocity.	"P.5-22"
SMC_MoveContinuousRelati ve	Relative value position velocity move	Executes relative value positioning and, after the axis reaches the target position, causes the axis to keep moving at a specified velocity.	"P.5-23"

- Velocity control

Name	Function	Description	Page
MC_MoveVelocity	Velocity control	Specifies the velocity of the axis.	"P.5-25"
MC_VelocityProfile	Velocity profile move	Causes the axis to operate according to the profile data that consists of a combination of velocity and time.	"P.5-26"
MC_AccelerationProfile	Acceleration profile move	Causes the axis to operate according to the profile data that consists of a combination of time and acceleration.	"P.5-27"

- Torque control

Name	Function	Description	Page
PMC_SetTorque	Torque control	Specifies the torque of the axis.	"P.5-30"

1.3 List of Function Block Instructions

1.3.3 Motion Control Function Blocks (Synchronous Control)

Cam operation

Name	Function	Description	Page
MC_CamIn	Start cam control	Starts cam synchronous operation.	"P.6-2"
MC_CamOut	Cancel cam operation	Cancels cam synchronous operation.	"P.6-5"
MC_CamTableSelect	Cam table selection	Specifies the cam table for cam synchronous operation.	"P.6-6"
SMC_GetTappetValue	Tappet output	Outputs the tappet set in the cam table.	"P.6-8"

- Gear operation

Name	Function	Description	Page
MC_GearIn	Start gear operation	Starts gear synchronous operation.	"P.6-11"
MC_GearInPos	Position specified gear operation	Starts gear synchronous operation from the specified absolute position.	"P.6-12"
MC_GearOut	Cancel gear operation	Cancels the gear synchronous operation.	"P.6-14"

- Phase correction

Name	Function	Description	Page
MC_Phasing	Master axis phase correction	Corrects the phase between the master and slave axes.	"P.6-16"

1.3.4 Motion Control Function Blocks (Multi-axis Control)

Interpolation control

Name	Function	Description	Page
PMC_Interpolator2D	2-axis interpolation control	Specifies the CNC pattern and performs 2-axis interpolation control.	"P.7-2"
PMC_Interpolator3D	3-axis interpolation control	Specifies the CNC pattern and performs 3-axis interpolation control.	"P.7-3"
PMC_PositionTracker	Trajectory display data generation	Generates the data for displaying the trajectory of the target axis visually.	"P.7-5"

1.3.5 Motion Control Function Blocks (Motion Communication Control)

- RTEX

Name	Function	Description	Page
RTEX_ClearAmpAlarm	Clear amplifier alarm	Clears the amplifier's alarm.	"P.8-2"
RTEX_ReadAmpAlarm	Read amplifier alarm	Reads the amplifier's alarm.	"P.8-4"
RTEX_ReadAmpState	Amplifier alarm status	Reads the amplifier's alarm status.	"P.8-5"
RTEX_ReadAmpData	Amplifier monitor	Reads the amplifier's monitor data.	"P.8-6"
RTEX_ReadAmpParameter	Read amplifier parameter	Reads the amplifier's parameters.	"P.8-7"
RTEX_WriteAmpParameter	Write amplifier parameter	Writes the amplifier's parameters.	"P.8-8"
RTEX_ClearAmpMultiTurnD ata	Clear the multi-turn data	Clears the multi-turn data of the amplifier.	"P.8-9"
RTEX_ClearAmpPositionalD eviation	Clear amplifier deviation counter	Clears the deviation counter of the amplifier.	"P.8-10"
RTEX_ReadNot	Read POT of amplifier	Reads the amplifier's POT status.	"P.8-11"
RTEX_ReadPot	Read NOT of amplifier	Reads the amplifier's NOT status.	"P.8-11"
RTEX_GetTrackingComman dError	Error	Measures the number of sent RTEX commands and the number of lost RTEX commands.	"P.8-12"

1.3.6 Motion Control Function Blocks (Auxiliary Function)

- Motion auxiliary function (Monitoring)

Name	Function	Description	Page
MC_ReadActualPosition	Read actual position	Reads the actual position data of the axis.	"P.9-2"
MC_ReadActualVelocity	Read actual velocity	Reads the actual velocity of the axis.	"P.9-2"
PMC_ReadActualTorque	Read actual torque	Read the actual torque value of the axis.	"P.9-3"
MC_ReadStatus	Read status	Reads the status information of the axis.	"P.9-4"
SMC_InPosition	Read oldest error	Compares the actual position of the AMP with the command value and judges whether the position is within the specified range.	"P.9-6"
SMC_ReadFBError	Reads the oldest function block error information.	"P.9-7"	
SMC_ClearFBError	Clear oldest error	Clears the oldest FB error information.	"P.9-8"
SMC_CheckAxisCommunica tion	Check axis communication state	Checks the communication state of the axis.	"P.9-8"
SMC_CheckLimits	Check exceeding limits	Checks whether the velocity, acceleration, or deceleration is in	"P.9-9"

1.3 List of Function Block Instructions

Name	Function	Description	Page
		excess of the dynamic limit set value of the device.	
SMC_GetMaxSetAccDec	Measure maximum acceleration / deceleration	Measures the maximum value of the axis acceleration / deceleration command.	"P.9-10"
SMC_GetMaxSetVelocity	Measure maximum velocity	Measures the maximum value of the axis velocity command.	"P.9-11"
SMC_GetTrackingError	Measure tracking error	Measures the tracking error of the actual position for the axis command position.	"P.9-11"
SMC_MeasureDistance	Measures turnaround travel distance	Measures the travel distance.	"P.9-12"
SMC_ReadSetPosition	Read axis set position	Reads the set command position of the axis.	"P.9-13"

- Motion auxiliary function (Change / reset)

Name	Function	Description	Page
MC_Reset	Reset axis error	Resets the state transition error of the axis.	"P.9-14"
MC_SetPosition	Change actual position	Changes the actual command position of the axis.	"P.9-14"

- Motion auxiliary function (Other functions)

Name	Function	Description	Page
PMC_ReadLatchPosition	Monitor AMP latch position	Monitors the AMP latch position.	"P.9-16"
PMC_StopLatchPosition	Stop AMP latch monitoring	Stops monitoring the AMP latch position.	"P.9-18"
MC_DigitalCamSwitch	Enable digital cam switch	Performs ON / OFF control on the digital output according to the axis position.	"P.9-21"
SMC_BacklashCompensatio n	Compensate backlash	Compensates the backlash.	"P.9-25"

1.3.7 Function Blocks (Others)

- COM port (General-purpose communication)

The following table lists the function blocks that are used to perform general-purpose communication with the COM port.

Name	Function	Description	Page
COM.Open	Open COM port	Opens the COM port.	"P.10-4"
COM.Close	Close COM port	Closes the COM port.	"P.10-6"
COM.Read	Read COM port	Reads data from the COM port.	"P.10-7"
COM.Write	Write COM port	Writes data to the COM port.	"P.10-8"

Name	Function	Description	Page
COM.ERROR	Error ID	This is an enumeration type error ID that is output when the COM port (general-purpose communication) function block is executed.	"P.10-8"

- COM port (Modbus COM)

The following table lists the instructions that are used to perform ModbusRTU communication with the COM port.

Name	Function	Description	Page
loDrvModbusComPort	ModbusComPort device	This is a function block that controls the Modbus_Master_COM_Port device.	"P.10-10"
IoDrvModbus.ModbusChann el	Start sending Modbus command	Sends the command set in the Modbus Slave channel of the ModbusSlaveCOM_Port device.	"P.10-10"
IoDrvModbus.ModbusReque st	Modbus request	Processes the Modbus command specified by I/O without using the ModbusMasterComPort device.	"P.10-11"
loDrvModbus.ModbusReque st2	Modbus request 2	Like the ModbusRequest, processes the Modbus command specified by I/O without using the ModbusMasterComPort device.	"P.10-12"
IoDrvModbus.ModbusSlave ComPort	ModbusSlaveComPort device	This is a function block that controls the Modbus_Slave_COM_Port device.	"P.10-14"
IoDrvModbus.MB_ErrorCod es	Error code	This is an enumeration type error code that is output when the function block for Modbus communication instruction that uses the COM port is executed.	"P.10-14"

- LAN port (loDrvEthernet)

The following table lists the library functions that are used for the network interface to perform communication with the LAN port.

Name	Function	Description	Page
loDrvEthernet	Ethernet device	This is a function block that acquires the status of the LANPort device.	"P.10-16"
IoDrvEthernet.IPARRAY_TO _INADDR	From array type to union type	This is a function that converts an array type IP address to an INADDR (union type).	"P.10-16"
IoDrvEthernet.IPARRAY_TO _IPSTRING	From array type to character string type	This is a function that converts an array type IP address to a character string type.	"P.10-17"
IoDrvEthernet.IPARRAY_TO _UDINT	From array type to UDINT type	This is a function that converts an array type IP address to a UDINT type.	"P.10-17"
IoDrvEthernet.IPSTRING_T O_UDINT	From character string type to UDINT type	This is a function that converts a character string type IP address to a UDINT type.	"P.10-18"

1.3 List of Function Block Instructions

Name	Function	Description	Page
IoDrvEthernet.UDINT_TO_I PARRAY	From UDINT type to array type	This is a function that converts a UDINT type IP address to an array type.	"P.10-18"
IoDrvEthernet.UDINT_TO_I PSTRING	From UDINT type to character string type	This is a function that converts a UDINT type IP address to an array type.	"P.10-18"

- LAN port (General-purpose communication)

The following table lists the library functions that are used to perform general-purpose communication with the LAN port using the TCP or UDP protocol.

Name	Function	Description	Page
NBS.TCP_Client	Connect to TCP client	Connects to the TCP/IP client.	"P.10-20"
NBS.TCP_Connection	Connect TCP	Establishes the connection of the client connecting to the connection port opened by TCP_Server.	"P.10-20"
NBS.TCP_Read	Receive TCP data	Acquires data received by the connection port that is established by TCP_Connection.	"P.10-21"
NBS.TCP_Server	Connect TCP server	Opens the specified port as a TCP/IP connection port.	"P.10-22"
NBS.TCP_Write	Open UDP port	Receive UDP data	Sends data to the connection port that is established by TCP_Connection.
NBS.UP.10-23"			
NBS.UDP_Receive	Send UDP data	Receives data to the connection handle acquired by UDP_Peer.	"P.10-24"
NBS.UDP_Send	Sends data to the connection handle acquired by UDP_Peer.	"P.10-26"	
NBS.ERROR	Error code	This is an enumeration type error code that is output when the function block for communication instruction that uses the LAN port is executed.	"P.10-25"

- LAN port (Modbus TCP)

The following table lists the library functions that are used to perform ModbusTCP communication with the LAN port.

Name	Function	Description	Page
IoDrvModbusTCP	ModbusTCP device	This is a function block that controls the Modbus_TCP_Master device.	"P.10-28"
IoDrvModbusTCP.ModbusC hannel	Start sending Modbus command	Sends the command set in the Modbus Slave channel of the ModbusTCP_Slave device.	"P.10-28"
IoDrvModbusTCP.ModbusR equest	Modbus request	Processes the Modbus command specified by I/O without using the Modbus_TCP_Slave device.	"P.10-29"
loDrvModbusTCPSlave	ModbusTCPSlave device	This is a function block that controls the Modbus_TCP_Slave device.	"P.10-30"

Name	Function	Description	Page
loDrvModbus.MB_ErrorCod es	Error code	This is an enumeration type error code that is output when the function block for Modbus communication instruction that uses the LAN port is executed.	"P.10-31"

LAN port (EtherNet/IP)

The following table lists instructions that are used to control EtherNet/IP scanner and adapter functions using the GM1 controller.

Name	Function	Overview	Page
loDrvEtherNetIP	EtherNet/IP scanner device	This is a function block that controls the EtherNet/IP scanner device.	"P.10-33"
RemoteAdapter	Remote adapter device	This is a function block for the Remote adapter device linked to the EtherNet/IP scanner device.	"P.10-34"
loDrvEtherNetIPAdapter	EtherNet/IP adapter device	This is a function block that controls the EtherNet/IP adapter device.	"P.10-36"
Module	EtherNet/IP module device	This is a function block that controls the EtherNet/IP module device.	"P.10-37"
Apply_Attributes	Apply_Attributes service	This is a function block that calls Apply_Attributes service of the CIP object instance.	"P.10-38"
Generic_Service	Execute generic service	This is a function block that executes generic services with the EtherNet/IP adapter.	"P.10-39"
Get_Attribute_Single	Inquire specific attributes of a specific instance	This is a function block that inquires specific attributes of a specific instance of the CIP object	"P.10-40"
Get_Attributes_All	Inquire all attributes of a specific instance	This is a function block that inquires all attributes of a specific instance of the CIP object	"P.10-41"
Set_Attribute_Single	Set specific attributes of a specific instance	This is a function block that sets specific attributes of a specific instance of the CIP object	"P.10-42"
Set_Attributes_All	Set all attributes of a specific instance	This is a function block that sets all attributes of a specific instance of the CIP object	"P.10-43"
NOP	NOP service	This is a function block that executes the NOP service of a specific instance of the CIP object	"P.10-44"
Reset	Reset service	This is a function block that executes the Reset service of a specific instance of the CIP object	"P.10-45"
Start	Start service	This is a function block that executes the Start service of a specific instance of the CIP object	"P.10-45"
Stop	Stop service	This is a function block that executes the Stop service of a specific instance of the CIP object	"P.10-46"

1.3 List of Function Block Instructions

Name	Function	Overview	Page
ENIP.ERROR	Message service instruction error code		"P.10-47"
ENIP.CIPClass	Service class code		"P.10-49"

SD card operation (File operation)

Files in the SD card inserted in the SD memory card slot can be operated.

Name	Function	Description	Page
FILE.Open	Open file	Opens a file or creates a new file.	"P.10-52"
FILE.Close	Close file	Closes a file.	"P.10-53"
FILE.Read	Read file	Reads data from the file opened by the Open instruction.	"P.10-53"
FILE.Write	Write file	Writes data to the file opened by the Open instruction.	"P.10-54"
FILE.Flush	Flush file	Flushes buffer contents to the file opened by the Open instruction.	"P.10-55"
FILE.Copy	Copy file	Copies a file.	"P.10-56"
FILE.Rename	Rename file	Changes a file name.	"P.10-57"
FILE.Delete	EOF of file	Deletes a file.	"P.10-58"
FILE.EOF	Get file attribute	Determines whether the current offset of a file is EOF (End Of File) or not.	"P.10-58"
FILE.GetAttribute	Gets file attributes (compressed, hidden, normal, read only).	"P.10-59"	
FILE.GetPos	Get file offset	Gets the current offset of a file.	"P.10-60"
FILE.GetSize	Get file size	Gets the file size.	"P.10-60"
FILE.GetTime	Set file offset	Get the update time of a file	"P.10-61"
FILE.SetPos	Sets the offset of a file.	"P.10-62"	

- SD card operation (Directory operation)

Directories in the SD card inserted in the SD memory card slot can be operated.

Name	Function	Description	Page
FILE.DirCreate	Create directory	Creates a directory with a specified name.	"P.10-64"
FILE.DirOpen	Open directory	Opens a directory.	"P.10-64"
FILE.DirClose	Close directory	Closes a directory	"P.10-65"
FILE.DirCopy	Copy directory	Copies a directory.	"P.10-66"
FILE.DirRename	Rename directory	Renames a directory	"P.10-67"
FILE.DirRemove	Delete directory	Deletes a directory.	"P.10-67"
FILE.DirList	Directory list	Outputs a list of directories and files inside the directory.	"P.10-68"

- Clock setting

The following table lists the function blocks that are used to set the clock of the GM1 Controller.

Name	Function	Description	Page
SYS_GetTime	Get time	This is a function block that gets the current local time	"P.10-70"
SYS_SetTime	Set time	This is a function block that sets the current local time.	"P.10-70"
SYS_GetTimezone	Get time zone information	This is a function block that gets the time zone information.	"P.10-71"
SYS_SetTimezone	Set time zone information	This is a function block that sets the time zone information.	"P.10-71"
SYS_DateConcat	Convert from UINT type to DATE type	This is a function that converts a UINT type date to a DATE type.	"P.10-72"
SYS_DateSplit	Convert from DATE type to UINT type	This is a function that converts a DATE type date to a UINT type.	"P.10-73"
SYS_DTConcat	Convert from UINT type to DT type	This is a function that converts a UINT type date and time to a DT type.	"P.10-73"
SYS_DTSplit	Convert from UINT type to DT type	This is a function that converts a UINT type date and time to a DT type.	"P.10-74"
SYS_GetDayOfWeek	Get day of the week	This is a function that gets the day of the week from the DATE type date.	"P.10-75"
SYS_TODConcat	Convert from UINT type to TOD type	This is a function that converts a UINT type time with milliseconds to a TOD type.	"P.10-75"
SYS_TODSplit	Convert from UINT type to TOD type	This is a function that converts a TOD type time with milliseconds to a UINT type.	"P.10-76"
ERROR	Clock instruction error code		"P.10-77"

System data

Name	Function	Description	Page
SYS_GetSystemError	Get system error	Gets the information of a system error that has occurred in the GM1 Controller.	"P.10-78"

1.4 List of Function Block Instructions that Cannot Be Used with the GM1

1.4 List of Function Block Instructions that Cannot Be Used with the GM1

- Instructions not available for Modbus

The following function blocks in the loDrvModbusTCP, loDrvModbusTCPSlave, loDrvModbus, and loDrvModbusSerialSlave libraries are not available for the GM1 Controller.

Name	Function	Alternative function	Page
ModbusTCPSlaveBase	-	-	-
ModbusTCPSlaveUnit	-	-	-
ModbusTCPSlaveUnit_Diag	-	-	-
loDrvModbusTCP_Diag	-	-	-
ModbusTCPSlave_Diag	-	-	-
ModbusTCPDeviceDiag	-	-	-
loDrvModbusComPort_Diag	-	-	-
ModbusSlaveComPort_Diag	-	-	-
loDrvModbusSerialSlave	-	-	-
ModbusSerialDeviceDiag	-	-	-
ModbusServer	-	-	-

■ Instructions not available for general-purpose communication

The following function blocks in the CAA NBS(Net Base Services) library are not available for the GM1 Controller.

Name	Function	Alternative function	Page
TCP_ReadBuffer	-	-	-
TCP_WriteBuffer	-	-	-
UDP_ReceiveBuffer	-	-	-
UDP_SendBuffer	-	-	-
DummyJob	-	-	-

- Instructions not available for EtherNet/IP

The following function blocks in the loDrvEtherNetIP and loDrvEtherNetIPAdapter libraries are not available for the GM1 Controller.

Name	Function	Alternative function	Page
loDrvEtherNetIP_diag	-	-	-
RemoteAdapter_diag	-	-	-
AdapterDiagnosis	-	-	-
loDrvEtherNetIPAdapter_Diag	-	-	-
Module_Diag	-	-	-

1.4 List of Function Block Instructions that Cannot Be Used with the GM1

- Instructions not available for motion control

The following function blocks in the SM3_Basic library are not available for the GM1 Controller. Alternative functions are listed, if available.

Name	Function	Alternative function	Page
MC_TouchProbe	Enable external latch	PMC_ReadLatchPosition	"P.9-16"
MC_AbortTrigger	Disable external latch	MC_StopLatchPosition	"P.9-18"
SMC_Commissioning	Commissioning status	Commissioning function of the GM Programmer	-
SMC_SetCustomRampType	Set acceleration / deceleration custom operation	-	-
SMC_CAM_ObjectManager	Manage cam data	-	-
SMC3_CommunicateDrivePar ameter	Communication setting	RTEX_ReadAmpParameter	"P.8-7"
SMC3_ReadDriveParameter	Read drive parameter	RTEX_ReadAmpParameter	"P.8-7"
SMC3_ReadParameter	Read parameter	RTEX_ReadAmpParameter	"P.8-7"
SMC3_WriteDriveParameter	Write drive parameter	RTEX_WriteAmpParameter	"P.8-8"
SMC3_WriteParameter	Write parameter	RTEX_WriteAmpParameter	"P.8-8"
MC_ReadBoolParameter	Read BOOL-type parameter	RTEX_ReadAmpParameter	"P.8-7"
MC_ReadParameter	Read parameter	RTEX_ReadAmpParameter	"P.8-7"
MC_WriteBoolParameter	Write BOOL-type parameter	RTEX_WriteAmpParameter	"P.8-8"
MC_WriteParameter	Write parameter	RTEX_WriteAmpParameter	"P.8-8"
MC_ReadActualTorque	Read actual torque	PMC_ReadActualTorque	"P.9-3"
SMC_SetTorque	Set torque	PMC_SetTorque	"P.5-30"
MC_Home	Home return	PMC_Home	"P.5-4"
SMC_VIRTUAL_AXIS	Set virtual axis	-	-
SMC3_BrakeStatus	Get brake status	-	-
SMC3_BrakeControl	Brake control	-	-
SMC3_PersistPosition	Persist actual axis position	-	-
SMC3_PersistPositionLogical	Persist logical axis position	-	-
SMC3_PersistPositionSingletu rn	Persist actual axis position with a range	-	-
SMC_PerfStat	Calculate performance statistics	-	-
SMC_SeriesStat	Calculate increment statistics	-	-
SMC_AxisDiagnosticLog	Log axis parameter	-	-
SMC3_ReinitDrive		-	-
FB_Template_Edge		-	-
FB_Template_EdgeAbort		-	-
FB_Template_EdgeAbortTime out		-	-
SMC_StartupDrive		-	-

1.4 List of Function Block Instructions that Cannot Be Used with the GM1

Name	Function	Alternative function	Page
SMC_ChangeDynamicLimits		-	-
SMC_ChangeGearingRatio		-	-
SMC_SetMovementType		-	-
SMC_SetRampType		-	-
SMC_SetSoftwareLimits		-	-
SMC_CAMBounds		-	-
SMC_CAMBounds_Pos		-	-
SMC_CamEditor		-	-
SMC_CamRegister		-	-
SMC_GetCamSlaveSetPositio n		-	-
SMC_ReadCAM		-	-
SMC_WriteCAM		-	-
MC_ReadAxisError		-	-
SMC_PerfTimerSum		-	-
SMC_FollowPosition		-	-
SMC_FollowPositionVelocity		-	-
SMC_FollowSetValues		$-F l l o w V e l o c i t y ~$	

2 Ladder Instructions

2.1 Ladder Instructions 2-2
2.1.1 NO Contact 2-2
2.1.2 NC Contact 2-3
2.1.3 Rising Edge Detection Contact 2-3
2.1.4 Falling Edge Detection Contact 2-4
2.1.5 Parallel NO Contact 2-5
2.1.6 Parallel NC Contact 2-6
2.1.7 Coil 2-7
2.1.8 Negated Coil 2-7
2.1.9 Set Coil 2-8
2.1.10 Reset Coil 2-9

2.1 Ladder Instructions

2.1 Ladder Instructions

This section describes ladder instructions that can be used for ladder diagram program (LD program).

2.1.1 NO Contact

If the variable corresponding to the contact is TRUE, then the input value is output. If the variable is FALSE, then FALSE is output.

- Icon
(2)
(1)
 (3)
- Parameter

No.	Scope	Type	Description
(1)	Input	BOOL	Input to the NO contact
(2)	Variable name	BOOL	Variable that corresponds to the NO contact
(3)	Output	BOOL	Output from the NO contact

- Input method

Use one of the following methods to input the NO contact.

- From the tool box, select Ladder elements> NO contact and drag to "Start from here".
- Right-click on the network, and, from the displayed menu, select Insert Contact.
- Click the aricon on the tool bar.
- From the menu, select FBD / LD / IL>Insert Contact.
- Press the shortcut keys <Ctrl+k> simultaneously.

- Program example

If the variable (a1) corresponding to the NO contact is TRUE, then the value input to the NO contact (TRUE) is output as is.

If the variable (a1) corresponding to the contact is FALSE, then FALSE is output.

2.1.2 NC Contact

If the variable corresponding to the contact is TRUE, then FALSE is output. If the variable is FALSE, then the input value is output.

- Icon
(2)
(1)
 (3)

- Parameter

No.	Scope	Type	Description
(1)	Input	BOOL	Input to the NC contact
(2)	Variable name	BOOL	Variable that corresponds to the NC contact
(3)	Output	BOOL	Output from the NC contact

- Input method

Use one of the following methods to input the NC contact.

- From the tool box, select Ladder elements> NC contact and drag to "Start from here".
- Right-click on the network, and, from the displayed menu, select "Insert NC contact".
- Click the Icon on the tool bar.
- From the menu, select FBD / LD / IL>Insert NC contact.

- Program example

If the variable (a1) corresponding to the NC contact is TRUE, then FALSE is output.

If the variable (a1) corresponding to the NC contact is FALSE, then the value input to the NC contact (TRUE) is output as is.

2.1.3 Rising Edge Detection Contact

If a rising edge is detected in the variable corresponding to the contact, then the input value is output for one cycle only.

2.1 Ladder Instructions

- Icon
(2)
(1) $\quad \mathrm{P}$
- Parameter

No.	Scope	Type	Description
(1)	Input	BOOL	Input to the contact
(2)	Variable name	BOOL	Variable that corresponds to the rising edge detection contact
(3)	Output	BOOL	Output from the contact

- Input method

Input the rising edge detection contact by first inputting the NO contact and then changing the NO contact.
Select the NO contact just input and then perform one of the following operations.

- Right-click and, from the displayed menu, select Edge detection .
- From the menu, select FBD / LD / IL> Edge detection .
- Press the shortcut keys <Ctrl+e> simultaneously.
- Click the on the tool bar.

- Program example

The following program is designed to detect the rising edge with the variable (a1) corresponding to the rising edge detection contact and to output TRUE for one cycle only.

2.1.4 Falling Edge Detection Contact

If a falling edge is detected in the variable corresponding to the contact, then the input value is output for one cycle only.

- Icon
(2)
(1) $\quad \begin{gathered}a 1 \\ \sim N\end{gathered}$
- Parameter

No.	Scope	Type	Description
(1)	Input	BOOL	Input to the contact

No.	Scope	Type	Description
(2)	Variable name	BOOL	Variable that corresponds to the falling edge detection contact
(3)	Output	BOOL	Output from the contact

■ Input method

Input the falling edge detection contact by first inputting the NO contact and then changing the NO contact.
Select the NO contact just input and then perform one of the following operations.

- Right-click and, from the displayed menu, select Edge detection twice.
- From the menu, select FBD / LD / IL> Edge detection twice.
- Press the shortcut keys Ctrl+e simultaneously twice.
- Click the on the tool bar twice.

- Program example

The following program is designed to detect the falling edge with the variable (a1) corresponding to the falling edge detection contact and to output TRUE for one cycle only.

2.1.5 Parallel NO Contact

NO contacts can be input in parallel to the initial contact. Of the contacts wired in parallel, if the output of one or more contacts is TRUE, TRUE is output.

- Icon

- Input method

To input a parallel NO contact below the initial contact, select Ladder elements >Parallel NO contact from the tool box and drag to the position indicated with " $\boldsymbol{\nabla}$ " next to the contact.
Or, with the contact selected, perform one of the following operations.

- Right-click, and, from the displayed menu, select Insert contact in parallel (below).
- From the menu, select FBD/LD/IL>Insert contact in parallel (below).
- Press the shortcut keys <Ctrl+r> simultaneously.
- Click the on the tool bar.

2.1 Ladder Instructions

Program example

This program is designed to input one NO contact in parallel to the NO contact. TRUE is output because the NO contact below is TRUE.

2.1.6 ParalleI NC Contact

NC contacts can be input in parallel to the initial contact. Of the contacts wired in parallel, if the output of one or more contacts is TRUE, TRUE is output.

- Icon

- Input method

To input a parallel NC contact below the initial contact, select Ladder elements >Parallel NC contact from the tool box and drag to the position indicated with " $\boldsymbol{\nabla}$ " next to the contact.
Or, with the contact selected, perform one of the following operations.

- Right-click, and, from the displayed menu, select "Insert NC contact in parallel (below)".
- From the menu, select FBD / LD / IL>Insert NC contact in parallel (below).
- Click the on the tool bar.

- Program example

This program is designed to input one NC contact in parallel to the NO contact. FALSE is output because the outputs of both contacts are FALSE.

2.1.7 Coil

The input value is saved in the variable corresponding to the coil. If the input value is TRUE, then TRUE is saved. If the input value is FALSE, then FALSE is saved.

- Icon
(2)
(1)

- Parameter

No.	Scope	Type	Description
(1)	Input	BOOL	Input to the coil
(2)	Variable name	BOOL	Name of the variable that corresponds to the coil

■ Input method

Use one of the following methods to input the coil.

- From the tool box, select Ladder elements> Coil and drag to "Add output or jump here" (when connecting to a contact).
- Right-click on the network, and, from the displayed menu, select Insert Coil .
- Click the icon on the tool bar.
- From the menu, select FBD / LD / IL>Insert Coil .
- Press the shortcut keys <Ctrl+a> simultaneously.

- Program example

This program is designed to input the output from the NO contact to the coil. TRUE is saved in the variable (b1) because the input to the coil is TRUE.

FALSE is saved in the variable (b1) because the input to the coil is FALSE.

2.1.8 Negated Coil

The negated value of the input is saved in the variable corresponding to the coil. If the input value is TRUE, then FALSE is saved. If the input value is FALSE, then TRUE is saved.

2.1 Ladder Instructions

- Icon

- Parameter

No.	Scope	Type	Description
(1)	Input	BOOL	Input to the negated coil
(2)	Variable name	BOOL	Name of the variable that corresponds to the negated coil

Input method

The negated coil can be input by inputting a coil and changing it.
With the input coil selected, perform one of the following operations.

- Right-click and, from the displayed menu, select Negation.
- From the menu, select FBD / LD / IL>Negation.
- Press the shortcut keys <Ctrl+n> simultaneously.
- Click the on the tool bar.

- Program example

This program is designed to input the output from the NO contact to the negated coil.
FALSE is saved in the variable (b1) because the input to the coil is TRUE.

TRUE is saved in the variable (b1) because the input to the coil is FALSE.

2.1.9 Set Coil

When the input value turns TRUE, TRUE is saved in the variable corresponding to the coil.
TRUE is held until the input to the reset coil that corresponds to the same variable turns TRUE.
■ Icon
(1)

- Parameter

No.	Scope	Type	Description
(1)	Input	BOOL	Input to the set coil.
(2)	Variable name	BOOL	Name of the variable that corresponds to the set coil

- Input method

Use one of the following methods to input the set coil.

- From the tool box, select Ladder elements>Set coil and drag to "Add output or jump here" (when connecting to the contact).
- Right-click on the network, and, from the displayed menu, select "Insert Set Coil ".
- Click the icon on the tool bar.
- From the menu, select FBD / LD / IL>Insert Set Coil .

- Program example

This program is designed to input the output from the NO contact to the set coil and the reset coil.
TRUE is saved in the set coil variable (b1) because the input to the set coil is TRUE.

1 Info.

- Each set coil should be accompanied by a reset coil.

2.1.10 Reset Coil

When the input value turns TRUE, FALSE is saved in the variable corresponding to the coil. FALSE is held until the input to set coil that corresponds to the same variable turns TRUE.

- Icon
(2)
(1)

2.1 Ladder Instructions

Parameter

No.	Scope	Type	Description
(1)	Input	BOOL	Input to the reset coil.
(2)	Variable name	BOOL	Name of the variable that corresponds to the reset coil

- Input method

Use one of the following methods to input the reset coil.

- From the tool box, select Ladder elements>Reset Coil and drag to "Add output or jump here" (when connecting to a contact).
- Right-click on the network, and, from the displayed menu, select Reset Coil.
- Click the icon on the tool bar.
- From the menu, select FBD / LD / IL>Insert reset Reset Coil .

- Program example

This program is designed to input the output from the NO contact to the set coil and the reset coil.
FALSE is saved in the variable (b1) because the input to the reset coil is TRUE.

1 Info.

- Each set coil should be accompanied by a reset coil.

3 Functions

3.1 Substitution Instruction 3-3
3.1.1 MOVE (Substitution) 3-3
3.2 Arithmetic Operation Instructions 3-4
3.2.1 ADD (Addition) 3-4
3.2.2 SUB (Subtraction) 3-5
3.2.3 MUL (Multiplication) 3-6
3.2.4 DIV (Division) 3-7
3.2.5 MOD (Remainder) 3-8
3.3 Boolean Operation Instructions 3-9
3.3.1 AND (Logical AND) 3-9
3.3.2 OR (Logical OR) 3-10
3.3.3 NOT (Negation) 3-10
3.3.4 XOR (Exclusive OR) 3-11
3.3.5 AND_THEN (Logical AND) 3-12
3.3.6 OR_ELSE (Logical OR) 3-13
3.4 Comparison Operation Instructions 3-15
3.4.1 EQ ("Equal" Comparison) 3-15
3.4.2 NE ("Not Equal" Comparison) 3-15
3.4.3 LT ("Less Than" Comparison) 3-16
3.4.4 LE ("Less Than or Equal" Comparison) 3-17
3.4.5 GT ("Greater Than" Comparison) 3-18
3.4.6 GE ("Greater Than Or Equal" Comparison) 3-19
3.5 Bit Shift Instructions 3-21
3.5.1 SHL (Shift Left) 3-21
3.5.2 SHR (Shift Right) 3-22
3.5.3 ROL (Rotate Left) 3-22
3.5.4 ROR (Rotate Right) 3-23
3.6 Selection Instructions 3-25
3.6.1 SEL (Binary Selector) 3-25
3.6.2 MUX (Multiplexer) 3-26
3.6.3 LIMIT (Limiter) 3-27
3.6.4 MAX (Maximum Value) 3-28
3.6.5 MIN (Minimum Value) 3-28
3.7 Numerical Operation Instructions 3-30
3.7.1 ABS (Absolute Value) 3-30
3.7.2 SQRT (Square Root) 3-30
3.7.3 LN (Natural Logarithm) 3-31
3.7.4 LOG (Common Logarithm) 3-32

3 Functions

3.7.5 EXP (Natural Exponent) 3-33
3.7.6 EXPT (Exponentiation) 3-33
3.7.7 SIN (Trigonometric Function Sine) 3-34
3.7.8 COS (Trigonometric Function Cosine) 3-35
3.7.9 TAN (Trigonometric Function Tangent) 3-36
3.7.10 ASIN (Trigonometric Function Arc Sine) 3-37
3.7.11 ACOS (Trigonometric Function Arc Cosine) 3-38
3.7.12 ATAN (Trigonometric Function Arc Tangent) 3-38
3.8 Data Type Conversion Instructions 3-40
3.8.1 "Type 1"_TO_"Type 2" ("Type 1">"Type 2" Conversion) 3-40
3.8.2 TRUNC (Real Number to DINT Conversion) 3-41
3.8.3 TRUNC_INT (Real Number to INT Conversion) 3-41
3.9 Character string instructions 3-43
3.9.1 LEN (Length of a Character String) 3-43
3.9.2 LEFT (Extracting Characters from the Left End) 3-43
3.9.3 RIGHT (Extracting Characters from the Right End) 3-44
3.9.4 MID (Extracting Characters from the Specified Position) 3-45
3.9.5 CONCAT (Concatenating Character Strings) 3-46
3.9.6 INSERT (Inserting a Character String) 3-47
3.9.7 DELETE (Deleting a Character String) 3-47
3.9.8 REPLACE (Replacing a Character String) 3-48
3.9.9 FIND (Search for Character String) 3-50
3.10 Other Instructions 3-51
3.10.1 SIZEOF (Get the Size) 3-51
3.10.2 ADR (Get the Address) 3-51
3.11 SD Memory Card Slot Instruction 3-53
3.11.1 SYS_GetSDCoverState (Get SD Card Cover Open / Close State) 3-53
3.11.2 SYS_GetSDAccessRdy (Get SD Card Access Ready State) 3-53

3.1 Substitution Instruction

Use the substitution instruction to substitute a variable with a value of another variable.

3.1.1 MOVE (Substitution)

This is a function that substitutes the value of a variable specified in the input for a variable specified in the output.

■ Icon

- Parameter

Scope	Type	Description
Input	All	Specifies the variable of the substitution source.
Output	All	Specifies the variable of the substitution target.

- Program example

This program is designed to substitute the value of input variable "input1" for the output variable "output1".

LD program

ST program

```
output1 55 := MOVE (input1 प5 );
```

It is also possible to substitute the value using an operator (:=).

```
output1 5 := input1 5 5,
```


3.2 Arithmetic Operation Instructions

3.2 Arithmetic Operation Instructions

Arithmetic operation instructions can be used to perform calculation such as four arithmetic operations.

3.2.1 ADD (Addition)

This is a function that adds input arguments and outputs the sum.

- Icon

Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the variables to be added.
Output	(Note 1)	Outputs the sum of variables specified in the input.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL, TIME, TIME_OF_DAY, DATE_AND_TIME

Time type data can be added in the following combinations.

- TIME + TIME = TIME
- TIME_OF_DAY + TIME = TIME_OF_DAY
- DATE_AND_TIME + TIME = DATE_AND_TIME

- Program example

This program is designed to output the sum of input variables "input1" and "input2" to the output variable "output".

LD program

ST program

It is possible to add the values using "+" operator.

```
output\ 8 := input1 }
```


1 Info.

- If you want to increase input arguments in the LD program, right-click on the ADD function, and, on the displayed menu, select "Add Input".

3.2.2 SUB (Subtraction)

This is a function that subtracts input arguments and outputs the difference.

- Icon

- Parameter

Scope	Number	Type	Description
Input	$(1),(2)$	(Note 1)	Specifies the variables to be subtracted.
Output	-	(Note 1)	Outputs the value obtained by subtracting the input (2) from the input (1).

(Note 1) Usable data types
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL, TIME, TIME_OF_DAY, DATE, DATE_AND_TIME
For time type data, subtraction can be performed in the following combinations. Note that negative time cannot be calculated.

- TIME - TIME $=$ TIME
- DATE - DATE $=$ TIME
- TOD - TIME = TOD
- TOD - TOD = TIME
- DT - TIME = DT
- DT - DT = TIME

- Program example

This program is designed to output the difference between the input variables "input1" and "input2" to the output variable "output1".

LD program

3.2 Arithmetic Operation Instructions

ST program

It is possible to subtract the values using "-" operator.

```
output1\square5 \= input1\square 8
```


3.2.3 MUL (Multiplication)

This is a function that multiplies input arguments and outputs the product.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the variables to be multiplied.
Output	(Note 1)	Outputs the product of variables specified in the input.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL, TIME

- Program example

This program is designed to output the product of the input variables "input1" and "input2" to the output variable "output1".

LD program

ST program

It is possible to multiply the values using "*" operator.

```
output1 24 := input1\square 8 * input2 }5
```


1 Info.

- If you want to increase input arguments in the LD program, right-click on the MUL function, and, on the displayed menu, select "Add Input".
- TIME type data cannot be multiplied by REAL type, LREAL type, or TIME type data.

3.2.4 DIV (Division)

This is a function that divides input arguments and outputs the quotient.

- Icon

- Parameter

Scope	No.	Type	Description
Input	$(1),(2)$	(Note 1)	Specifies the variables to be divided.
Output	-	(Note 1)	Outputs the quotient obtained by dividing the input (2) by the input (1).

(Note 1) Usable data types
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL, TIME

- Program example

This program is designed to output the quotient of the INT type input variables "input1" and "input2" to the INT type output variable "output1".

LD program

ST program

It is possible to divide the values using the division operator ("/") .
output1 2 := input1 8 / input2 3 ;

3.2 Arithmetic Operation Instructions

1 Info.

- TIME type variables can be divided by integer type variables.
- When a variable is divided by a DINT, LINT, REAL, or LREAL type variable, it can be checked if 0 is used in the calculation. (Refer to "Auto Check POU" in the "SMC Tool Introduction Guide".)

3.2.5 MOD (Remainder)

This is a function that divides input arguments and outputs the remainder.
■ Icon

- Parameter

Scope	No.	Type	Description
Input	$(1),(2)$	(Note 1)	Specifies the variables to be divided.
Output	-	(Note 1)	Outputs the remainder obtained by dividing the input (2) by the input (1).

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

- Program example

This program is designed to output the remainder obtained from dividing the INT type input variables "input1" and "input2" to the INT type output variable "output1".

LD program

ST program

```
output1 }3\mathrm{ 3 := input1 }8\mathrm{ 8 MOD input2 }5
```


3.3 Boolean Operation Instructions

Boolean operation instructions can be used to perform bool operations such as logical AND or logical OR.

3.3.1 AND (Logical AND)

This is a function that outputs logical AND of the input arguments.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the variables to be used to obtain logical AND.
Output	(Note 1)	Outputs the logical AND of the variables specified in the input.

(Note 1) Usable data type
BOOL, BYTE, WORD, DWORD, LWORD

- Program example

This program is designed to output the logical AND of the WORD type input variables "input1" and "input2" to the output variable "output1".
The execution result is displayed in a hexadecimal number.

LD program

ST program

```
output1\boxed{16#0048}:= input1\boxed{16#1248 AND input2 16#00FF};
```


1 Info.

- If you want to increase input arguments in the LD program, right-click on the AND function, and, on the displayed menu, select "Add Input".

3.3 Boolean Operation Instructions

3.3.2 OR (Logical OR)

This is a function that outputs logical OR of the input arguments.

- Icon

Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the variables to be used to obtain logical OR.
Output	(Note 1)	Outputs the logical OR of the variables specified in the input.

(Note 1) Usable data type
BOOL, BYTE, WORD, DWORD, LWORD

- Program example

This program is designed to output the logical OR of the WORD type input variables "input1" and "input2" to the output variable "output1".
The execution result is displayed in a hexadecimal number.

LD program

ST program

1 Info.

- If you want to increase input arguments in the LD program, right-click on the OR function, and, on the displayed menu, select "Add Input".

3.3.3 NOT (Negation)

This is a function that outputs the negation of the input argument.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the variable to be used to obtain the negation.
Output	(Note 1)	Outputs the negation of the variable specified in the input.

(Note 1) Usable data type BOOL, BYTE, WORD, DWORD, LWORD

- Program example

This program is designed to output the negation of the BYTE type input variable "input1" to the output variable "output1".
The execution result is displayed in a binary number.

LD program

ST program

```
output1 2#00001111 := NOT input1 2#11110000;
```


3.3.4 XOR (Exclusive OR)

This is a function that outputs exclusive OR of the input arguments.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the variables to be used to obtain exclusive OR.
Output	(Note 1)	Outputs the exclusive OR of the variables specified in the input.

3.3 Boolean Operation Instructions

Scope	Type	Description
		Outputs 0 if both input bits are 1 or 0 . Outputs 1 if one of the two input bits is 1 and the other bit is 0 .
(Note 1) Usable data type BOOL, BYTE, WORD, DWORD, LWORD		

- Program example

This program is designed to output the exclusive OR of the BYTE type input variables "input1" and "input2" to the output variable "output1".
The execution result is displayed in a binary number.

LD program

ST program

```
output1 2#10100101 := input1 2#01010101 XOR input2 2#11110000
```


3.3.5 AND_THEN (Logical AND)

This is a conditional AND evaluation function of the input operand.

- Usable data types

BOOL, BIT

- Program example

This program is designed to compare the value of the variable accessed by pwAddress (pointer) with wExpected if the pwAddress is not NULL and, if they are the same, substitute with the value of wNewValue.
As default values, " 5 " is stored in the variable "test1" accessed by pwAddress, " 5 " in wExpected, and " 3 " in wNewValue.
As an initial step, judgment is made whether pwAddress is NULL or not. Since it is not NULL, comparison is made between the value of "test1" and the value of wExpected as the next step. Since these two values are both " 5 ", TRUE is assigned. As a result, the value of wNewValue " 3 " is stored in the "test1" and the xFlag flag is set to TRUE.

ST program

[Declaration section]

```
VAR
    pwAddress : POINTER TO WORD;
    wExpected : WORD := 5;
    wNewValue : WORD := 3;
    xFlag : BOOL;
    testl : WORD := 5;
END_VAR
[Implementation section]
```

```
pwAddress 15:F1D10BBE := ADR(test1 16m0003);
```

```
pwAddress 15:F1D10BBE := ADR(test1 16m0003);
```



```
    pwAddress^1640003: = wNewValue 1640003;
    xFlagTRUE := IRUE;
ELSE
    xFlag|TUE := FALSE;
END_IF
```


1 Info.

- Expressions of other operands are executed only when the first operand is TRUE.

Therefore, if no value is stored in pwAddress in the above example, the initial NULL judgment turns FALSE. As a result, no judgment is performed on operands after the AND_THEN operator.

3.3.6 OR_ELSE (Logical OR)

This is a conditional OR evaluation function of the input operand.

- Usable data types

BOOL, BIT

- Program example

$16 \# 000000 \mathrm{FF}$ is stored in the variable dw.
"dw. 8 " that represents bit 8 of dw is FALSE and "dw. 1 " that represents bit 1 is TRUE.
Therefore, the operation result flag $b X$ is TRUE.
Note that the third input expression is not executed and bEver remains FALSE.

ST program

[Declaration section]
var
bever : Bool;
bx : BOLL;
dw : DWORD := 16 $\ddagger 000000 \mathrm{FF}$;
END_VAR
[Implementation section]
bEver FALSE : = FALSE;

3.3 Boolean Operation Instructions

1 Info.

- In case of OR_ELSE, when one of the operands is evaluated TRUE, all other operator expressions are not evaluated.

3.4 Comparison Operation Instructions

Comparison operation instructions can be used to compare two arguments.

3.4.1 EQ ("Equal" Comparison)

This is a function that compares two input arguments and determines if they are the same value.

- Icon

- Parameter

Scope	Type	Description
Input	All	Specifies the variables to be compared.
Output	BOOL	Outputs TRUE if the input variable values are the same. Outputs FALSE if they are different.

- Program example

This program is designed to compare the input variables "input1" and "input2" and output the result to the output variable "output1".

LD program

TRUE is output because the input variable values "input1" and "input2" are the same.

ST program

Use the operator ($=$) to compare the values.
FALSE is output because the input variable values "input1" and "input2" are different.

```
output1 FALSE := (input1 }3\mathrm{ 3 = input2 }\square5)\mathrm{ ;
```


3.4.2 NE ("Not Equal" Comparison)

This is a function that compares two input arguments and determines if they are not the same.

3.4 Comparison Operation Instructions

- Icon

- Parameter

Scope	Type	Description
Input	All	Specifies the variables to be compared.
Output	BOOL	Outputs TRUE if the input variable values are different. Outputs FALSE if they are the same.

- Program example

This program is designed to compare the input variables "input1" and "input2" and output the result to the output variable "output1".

LD program

FALSE is output because the input variable values "input1" and "input2" are the same.

ST program

Use the operator (<>) to compare the values.
TRUE is output because the input variable values "input1" and "input2" are different.

```
output1 TRUE := input1 3 <> input2 }
```


3.4.3 LT ("Less Than" Comparison)

This is a function that compares two input arguments and determines if the first argument is less than the second argument.

- Icon

- Parameter

Scope	No.	Type	Description
Input	$(1),(2)$	All	Specifies the variables to be compared.
Output	-	BOOL	Outputs TRUE if the value of input (1) is less than the value of input (2). Otherwise, outputs FALSE.

- Program example

This program is designed to compare the input variables "input1" and "input2" and output the result to the output variable "output1".

LD program

TRUE is output because the input variable "input1" is less than the input variable "input2".

ST program

Use the operator (<) to compare the values.
FALSE is output because the input variable "input1" is not less than the input variable "input2".

```
output1 FALSE := input1 }
```


3.4.4 LE ("Less Than or Equal" Comparison)

This is a function that compares two input arguments and determines if the first argument is less than or equal to the second argument.

- Icon
(1)

- Parameter

Scope	No.	Type	Description
Input	$(1),(2)$	All	Specifies the variables to be compared.
Output	-	BOOL	Outputs TRUE if the value of input (1) is less than or equal to the value of input (2). Otherwise, outputs FALSE.

3.4 Comparison Operation Instructions

Program example

This program is designed to compare the input variables "input1" and "input2" and output the result to the output variable "output1".

LD program

TRUE is output because the input variable "input1" is less than or equal to the input variable "input2".

ST program

Use the operator (<=) to compare the values.
FALSE is output because the input variable "input1" is not less than or equal to the input variable "input2".

```
output1FALSE := input1 }
```


3.4.5 GT ("Greater Than" Comparison)

This is a function that compares two input arguments and determines if the first argument is greater than the second argument.

■ Icon

- Parameter

Scope	No.	Type	Description
Input	$(1),(2)$	All	Specifies the variables to be compared.
Output	-	BOOL	Outputs TRUE if the value of input (1) is greater than the value of input (2). Otherwise, outputs FALSE.

Program example

This program is designed to compare the input variables "input1" and "input2" and output the result to the output variable "output1".

LD program

FALSE is output because the input variable "input1" is not greater than the input variable "input2".

ST program

Use the operator (>) to compare the values.
TRUE is output because the input variable "input1" is greater than the input variable "input2".

```
output1 TRUE := input1 }
```


3.4.6 GE ("Greater Than Or Equal" Comparison)

This is a function that compares two input arguments and determines if the first argument is greater than or equal to the second argument.

- Icon

- Parameter

Scope	No.	Type	Description
Input	$(1),(2)$	All	Specifies the variables to be compared.
Output	-	BOOL	Outputs TRUE if the value of input (1) is greater than or equal to the value of input (2). Otherwise, outputs FALSE.

- Program example

This program is designed to compare the input variables "input1" and "input2" and output the result to the output variable "output1".

LD program

FALSE is output because the input variable "input1" is not greater than or equal to the input variable "input2".

3.4 Comparison Operation Instructions

ST program

Use the operator (>=) to compare the values.
TRUE is output because the input variable "input1" is greater than or equal to the input variable "input2".

```
output1 TRUE := input1\square 6 >= input2 }\square
```


3.5 Bit Shift Instructions

Bit shift instructions can be used to perform bit shift operation on input arguments.

3.5.1 SHL (Shift Left)

This is a function that shifts the input argument to the left by the specified number of bits and outputs the shifted value. " 0 " is inserted from the least significant bit up to the bit position shifted by the shift quantity.

- Icon

- Parameter

Scope	No.	Type	Description
Input	(1)	(Note 1)	Specifies the variable on which bit shift is performed.
	(2)	(Note 1)	Specifies the number of times bit shift is performed (shift quantity).
	-	(Note 1)	Outputs the value bit shifted to the left from the value of input (1) by the quantity specified in the input (2).

(Note 1) Usable data type BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

- Program example

This program is designed to output the value that is shifted to the left from the value (2\#11000011) of input variable "input1" by the number of bits (2 bits) specified in "input2" to the output variable "output1".

LD program

ST program

```
output1 2#00001100 := SHL (input1 2#11000011, input2 2#00000010
```


3.5 Bit Shift Instructions

3.5.2 SHR (Shift Right)

This is a function that shifts the input argument to the right by the specified number of bits and outputs the shifted value. " 0 " is inserted from the most significant bit up to the bit position shifted by the shift quantity.

- Icon

Parameter

Scope	No.	Type	Description
Input	(1)	(Note 1)	Specifies the variable on which bit shift is performed.
	(2)	(Note 1)	Specifies the number of times bit shift is performed (shift quantity).
	-	(Note 1)	Outputs the value bit shifted to the right from the value of input (1) by the quantity specified in the input (2).

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

- Program example

This program is designed to output the value that is shifted to the right from the value (2\#11000011) of input variable "input1" by the number of bits (2 bits) specified in "input2" to the output variable "output1".

LD program

ST program

```
output1\2#00110000 := SHR(input1 2#11000011, input2 2#000000010);
```


3.5.3 ROL (Rotate Left)

This is a function that shifts the input argument to the left by the specified number of bits and outputs the shifted value. The bit value that has overflowed the most significant bit when the bit is shifted is inserted into the data starting from the least significant bit up to the bit position shifted by the shift quantity.

- Icon

- Parameter

Scope	No.	Type	Description
Input	(1)	(Note 1)	Specifies the variable on which bit shift is performed.
	(2)	(Note 1)	Specifies the number of times bit shift is performed (shift quantity).
	-	(Note 1)	Outputs the value rotated and shifted to the left from the value of input (1) by the quantity specified in the input (2).

(Note 1) Usable data type BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

- Program example

This program is designed to output the value that is rotated and shifted to the left from the value (2\#11000011) of input variable "input1" by the number of bits (2 bits) specified in "input2" to the output variable "output1".

LD program

ST program

```
output1 2#00001111 := ROL(input1 2#11000011, input2 2#00000010);
```


3.5.4 ROR (Rotate Right)

This is a function that shifts the input argument to the right by the specified number of bits and outputs the shifted value. The bit value that has overflowed the least significant bit when the bit is shifted is inserted into the data starting from the most significant bit up to the bit position shifted by the shift quantity.

3.5 Bit Shift Instructions

Icon

Parameter

Scope	No.	Type	Description
Input	(1)	(Note 1)	Specifies the variable on which bit shift is performed.
	(2)	(Note 1)	Specifies the number of times bit shift is performed (shift quantity).
	-	(Note 1)	Outputs the value rotated and shifted to the right from the value of input (1) by the quantity specified in the input (2).

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

- Program example

This program is designed to output the value that is rotated and shifted to the right from the value (2\#11000011) of input variable "input1" by the number of bits (2 bits) specified in "input2" to the output variable "output1".

LD program

ST program

```
output1 2#11110000 := ROR(input1 2#11000011, input2 2#00000010);
```


3.6 Selection Instructions

Selection instructions can be used to select arguments from multiple input arguments according to specified conditions and to output them.

3.6.1 SEL (Binary Selector)

This is a function that outputs the value of the input argument INO or IN1 depending on whether the input argument G is true or false.

- Icon

- Parameter

Scope	Name	Type	Description
Input	G	BOOL	Conditions for selecting the contents to be output
	IN0	All	Specifies the variable to be output if G is FALSE.
	IN1	All	Specifies the variable to be output if G is TRUE.
Output	-	All	Outputs the value of IN0 or IN1 depending on the value of G.

- Program example

This program is designed to output the value of the input variable "input2" or "input3" to the output variable "output1" depending on the value of the input variable "input1".

LD program

This program is designed to output the value of "input2" (INO) because the value of "input1" is FALSE.

ST program

This program is designed to output the value of "input3" (IN1) to the "output1" because the value of "input1" is TRUE.

```
output1 }55\mathrm{ := SEL (input1 TRUE ,input2 }53\mathrm{ , input3 }\square5\mp@code{5}\mathrm{ );
```


3.6.2 MUX (Multiplexer)

This is a function that selectively outputs the input arguments depending on the value of the input argument K .

- Icon

Parameter

Scope	Name	Type	Description
Input	K	(Note 1)	Specifies the value (K=0,1,2...) to select the value to output.
	-	All	Specifies the value to be output depending on K.
	-	All	Outputs one of the input arguments depending on the value of K.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

- Program example

This program is designed to output the value of the input variable "input2" or "input3" to the output variable "output1" depending on the value of the input variable "input1".

LD program

This program is designed to output the value of "input3" to "output1" depending on the value (1) of "input1".

ST program

This program is designed to output the value of "input 2" to the "output 1 " depending on the value (0) of "input 1 ".

```
output1 }3\mathrm{ 3 := MUX (input1 }00, input2\square 3, input3\square 5 5 ; 
```


3.6.3 LIMIT (Limiter)

This is a function that limits the input value with the lower and upper limit values and outputs a restricted value.

- Icon

- Parameter

Scope	Name	Type	Description
Input	MN	All	Specifies the lower limit of the value to be output.
	IN	All	Specifies the input values to be restricted.
	MX	All	Specifies the upper limit of the value to be output.
	-	All	Outputs values according to the following conditions. IN \leq MN: Outputs "MN". MN $\leq I N \leq M X: ~ O u t p u t s ~ " I N " . ~$ $M X \leq I N: ~ O u t p u t s ~ " M X " . ~$

- Program example

This program is designed to limit the value range of the input variable "input2" with the input variable "input1" (lower limit) and the input variable "input3" (upper limit) and to output the limited value to the output variable "output1".

LD program

This program is designed to output " 3 " to "output1" because the value (1) of "input2" (IN) is less than or equal to the lower limit (3) specified in "input1" (MN).

ST program

This program is designed to output " 5 " to "output1" because the value (8) of "input2" is greater than or equal to the upper limit (5) specified in "input3".

3.6.4 MAX (Maximum Value)

This is a function that outputs the maximum value of the input arguments.
■ Icon

- Parameter

Scope	Type	Description
Input	All	Specifies the values from which to obtain the maximum value.
Output	All	Outputs the maximum value of the input values.

Program example

This program is designed to output the maximum value of the input variables to the output variable "output1".

LD program

ST program

```
output1 5 5 := MAX(input1 }3\mathrm{ 3, input2 
```


1 Info.

- If you want to increase input arguments in the LD program, right-click on the MAX function, and, on the displayed menu, select "Add Input".

3.6.5 MIN (Minimum Value)

This is a function that outputs the minimum value of the input arguments.

■ Icon

- Parameter

Scope	Type	Description
Input	All	Specifies the values from which to obtain the minimum value.
Output	All	Outputs the minimum value of the input values.

- Program example

This program is designed to output the minimum value of the input variables to the output variable "output1".

LD program

ST program

output1 $3:=$ MIN (input1 33, input $2 \square 55$);

1 Info.

- If you want to increase input arguments in the LD program, right-click on the MIN function, and, on the displayed menu, select "Add Input".

3.7 Numerical Operation Instructions

3.7 Numerical Operation Instructions

Numerical operation instructions can be used to perform various numerical calculations.

3.7.1 ABS (Absolute Value)

This is a function that outputs the absolute value of the input argument.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value from which to obtain the absolute value.
Output	(Note 1)	Outputs the absolute value of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL

- Program example

This program is designed to output the absolute value of the input variable "input1" to the output variable "output1".

LD program

ST program

output1 5 := ABS (input1 $\square-5$);

3.7.2 SQRT (Square Root)

This is a function that outputs the square root $(\sqrt{ })$ of the input argument.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value from which to obtain the square root.
Output	(Note 2)	Outputs the square root of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type
REAL (if the input is REAL), LREAL

- Program example

This program is designed to output the square root of the input variable "input1" to the output variable "output1".

LD program

ST program

```
output1\square 4 := SQRT(input1 16 );
```


3.7.3 LN (Natural Logarithm)

This is a function that outputs the natural logarithm $\left(\log _{e} X\right)$ of the input argument (X).
■ Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value from which to obtain the natural logarithm.
Output	(Note 2)	Outputs the natural logarithm of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type
REAL (if the input is REAL), LREAL

3.7 Numerical Operation Instructions

Program example

This program is designed to output the natural logarithm $\left(\log _{e} 10\right)$ of the input variable "input1" (10) to the output variable "output1".

LD program

ST program

```
output1 2.3 ` := LN(input1 
```


3.7.4 LOG (Common Logarithm)

This is a function that outputs the common logarithm $\left(\log _{10} X\right)$ of the input argument (X).
■ Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value from which to obtain the common logarithm.
Output	(Note 2)	Outputs the common logarithm of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type REAL (if the input is REAL), LREAL

- Program example

This program is designed to output the common logarithm $\left(\log _{10} 5\right)$ of the input variable "input1"
(5) to the output variable "output1".

LD program

ST program

```
output1 0.699 * := LOG (input1 
```


3.7.5 EXP (Natural Exponent)

This is a function that outputs the natural exponent $\left(\mathrm{e}^{\mathrm{X}}\right.$) of the input argument (X).

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value from which to obtain the natural exponent.
Output	(Note 2)	Outputs the natural exponent of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type
REAL (if the input is REAL), LREAL

- Program example

This program is designed to output the natural exponent of the input variable "input1" to the output variable "output1".

LD program

ST program

```
output1 148 \triangleright := EXP (input1 }
    148.4131591025766
```


3.7.6 EXPT (Exponentiation)

This is a function that outputs the exponentiation $\left(a^{n}\right)$ of the input arguments (a, n).

3.7 Numerical Operation Instructions

- Icon

Parameter

Scope	No.	Type	Description
Input	(1)	(Note 1)	Inputs the base of exponentiation.
	(2)	(Note 1)	Inputs the exponent of exponentiation.
Output	(3)	(Note 2)	Outputs the exponentiation obtained from the input arguments. Outputs a^{n} in the following case. Input (1): a Input (2): n

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type
REAL (if the input is REAL), LREAL

- Program example

This program is designed to output the exponentiation $\left(5^{3}=125\right)$ obtained from the input variables "input1" and "input2" to the output variable "output1".

LD program

ST program

output1 $\square 125,=\operatorname{EXPT}\left(\right.$ input1 $\square 5$, input2 $\square \frac{3}{}$);

3.7.7 SIN (Trigonometric Function Sine)

This is a function that outputs the value of the trigonometric function sine. The unit of the input argument is radian.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value (unit: radian) from which to obtain the trigonometric function sine.
Output	(Note 2)	Outputs the value of sine of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type REAL (if the input is REAL), LREAL

- Program example

This program is designed to output the value of the trigonometric function sine obtained from the input variable "input1" to the output variable "output1".

LD program

ST program

3.7.8 COS (Trigonometric Function Cosine)

This is a function that outputs the value of the trigonometric function cosine. The unit of the input argument is radian.

- Icon

3.7 Numerical Operation Instructions

Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value (unit: radian) from which to obtain the trigonometric function cosine.
Output	(Note 2)	Outputs the value of cosine of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type REAL (if the input is REAL), LREAL

Program example

This program is designed to output the value of the trigonometric function cosine obtained from the input variable "input1" to the output variable "output1".

LD program

ST program

```
output1 0.878 \triangleright := COS(input1 }0.
```


3.7.9 TAN (Trigonometric Function Tangent)

This is a function that outputs the value of the trigonometric function tangent. The unit of the input argument is radian.

```
■ Icon
```


Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value (unit: radian) from which to obtain the trigonometric function tangent.
Output	(Note 2)	Outputs the value of tangent of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type

REAL (if the input is REAL), LREAL

- Program example

This program is designed to output the value of the trigonometric function tangent obtained from the input variable "input1" to the output variable "output1".

LD program

ST program

```
output1 0.546 ` := TAN(input1 }0.
```


3.7.10 ASIN (Trigonometric Function Arc Sine)

This is a function that outputs the value of the trigonometric function arc sine. The unit of the input argument is radian.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value (unit: radian) from which to obtain the trigonometric function arc sine.
Output	(Note 2)	Outputs the value of arc sine of the input argument.

(Note 1) Usable data type BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type REAL (if the input is REAL), LREAL

- Program example

This program is designed to output the value of the trigonometric function arc sine obtained from the input variable "input1" to the output variable "output1".

LD program

3.7 Numerical Operation Instructions

ST program

```
output1 0.524 湆 := ASIN(input1 }0.
```


3.7.11 ACOS (Trigonometric Function Arc Cosine)

This is a function that outputs the value of the trigonometric function arc cosine. The unit of the input argument is radian.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value (unit: radian) from which to obtain the trigonometric function arc cosine.
Output	(Note 2)	Outputs the value of arc cosine of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type
REAL (if the input is REAL), LREAL

- Program example

This program is designed to output the value of the trigonometric function arc cosine obtained from the input variable "input1" to the output variable "output1".

LD program

ST program

```
output1 1.05 \triangleright := ACOS (input1 
```


3.7.12 ATAN (Trigonometric Function Arc Tangent)

This is a function that outputs the value of the trigonometric function arc tangent. The unit of the input argument is radian.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the value (unit: radian) from which to obtain the trigonometric function arc tangent.
Output	(Note 2)	Outputs the value of arc tangent of the input argument.

(Note 1) Usable data type BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL
(Note 2) Usable data type REAL (if the input is REAL), LREAL

- Program example

This program is designed to output the value of the trigonometric function arc tangent obtained from the input variable "input1" to the output variable "output1".

LD program

ST program

```
output1 0.464 , := ATAN (input1 }0.
```


3.8 Data Type Conversion Instructions

3.8 Data Type Conversion Instructions

Data type conversion instructions can be used to convert the data type of a variable.

3.8.1 "Type 1"_TO_"Type 2" ("Type 1">"Type 2" Conversion)

This is a function that converts the data type of the input argument "Type 1 " to another data type "Type 2". Conversion from a larger size data type to a smaller size data type is not performed automatically. It is necessary to convert the data type using this instruction.

- Icon

- Parameter

Scope	Type	Description
Input	All	Specifies the variable required to be converted to a different type.
Output	All	Outputs the variable converted to a different type.

- Types of functions and conversion examples

Types of functions	Conversion example		Description
	Input	Output	
INT_TO_BOOL	5	TRUE	If other than 0 , outputs TRUE.
UINT_TO_USINT	$\begin{aligned} & 300 \\ & (16 \# 012 C) \end{aligned}$	$\begin{array}{\|l\|} \hline 44 \\ (16 \# 2 C) \end{array}$	Outputs lower eight bits out of the 16 bits of UINT.
REAL_TO_INT	3.5	4	Outputs data after rounding decimals to the nearest whole number.
TIME_TO_STRING	t\#2s5ms	'T\#2s5ms'	Outputs the TIME constant in the STRING type.
TOD_TO_UDINT	tod\#00:30:20	182000	Outputs the milliseconds from 00:00:00.
DATE_TO_UDINT	d\#2000-1-1	946684800	Outputs the seconds from 1970-1-1.
STRING_TO_WORD	'123'	123	Outputs the character string of a numerical value.

- Program example

LD program

The following is a program example of the INT_TO_BOOL function.

ST program

The following is a program example of the TOD_TO_UDINT function.

```
output1 1820000 := TOD_TO_UDINT (input1 }\square\mathrm{ TOD#0:30:20
```


3.8.2 TRUNC (Real Number to DINT Conversion)

This is a function that converts a real number type input to a DINT type.

- Icon

- Parameter

Scope	Type	Description
Input	REAL, LREAL	Real number type value
Output	DINT	Outputs the value converted to the DINT type from the input argument.

- Program example

This program is designed to convert the LREAL type input variable "input1" to the DINT type output variable "output1" and output the converted data.
Input1 := 1.7976931348623157E+307;

LD program

ST program

```
output1 2147483647 := TRUNC(input1 1.8E+307 \);
```


3.8.3 TRUNC_INT (Real Number to INT Conversion)

This is a function that converts a real number type input to an INT type.

- Icon

3.8 Data Type Conversion Instructions

- Parameter

Scope	Type	Description
Input	REAL, LREAL	Real number type value
Output	INT	Outputs the value converted to the INT type from the input argument.

- Program example

This program is designed to convert the LREAL type input variable "input1" to the INT type output variable "output1" and output the converted data.
Input1 := 1.7976931348623157E+307;

LD program

ST program

```
output1\square-1 := TRUNC_INT(input1 1.8E+307 \);
```


3.9 Character string instructions

Character string instructions can be used to perform various operations on character strings.

3.9.1 LEN (Length of a Character String)

This is a function that outputs the length of a character string.

- Icon

- Parameter

Scope	Name	Type	Description
Input	STR	STRING	Specifies the character string from which to obtain the length.
Output	-	INT	Outputs the character string length of the input argument.

- Program example

This program is designed to output the character string length of the input variable "input1" to the output variable "output1".

LD program

ST program

```
output1\square5}:= LEN(input
```

\qquad

``` ) ;
```


3.9.2 LEFT (Extracting Characters from the Left End)

This is a function that extracts a character string consisting of the specified number of characters from the left end of the character string and outputs the extracted data.

- Icon

3.9 Character string instructions

Parameter

Scope	Name	Type	Description
Input	STR	STRING	Specifies the character string from which a character string is to be extracted.
	SIZE	INT	Specifies the number of characters to be extracted from the left.
	-	STRING	Extracts a character string consisting of the number of characters specified in SIZE from STR and outputs the extracted data.

Program example

This program is designed to extract a character string consisting of the number of characters (3 characters) specified in "input2" from the left end of the character string of the input variable "input1" and to output the extracted character string to the output variable "output1".

LD program

ST program

3.9.3 RIGHT (Extracting Characters from the Right End)

This is a function that extracts a character string consisting of the specified number of characters from the right end of the character string and outputs the extracted data.

■ Icon

- Parameter

Scope	Name	Type	Description
Input	STR	STRING	Specifies the character string from which a character string is to be extracted.
	SIZE	INT	Specifies the number of characters to be extracted from the right.
	-	STRING	Extracts a character string consisting of the number of characters specified in SIZE from STR and outputs the extracted data.

- Program example

This program is designed to extract a character string consisting of the number of characters (3 characters) specified in "input2" from the right end of the character string of the input variable "input1" and to output the extracted character string to the output variable "output1".

LD program

ST program

output1 \square 'cde' $\square=$ RIGHT (input1 \square 'abcde' \square, input2 $\square 3$);

3.9.4 MID (Extracting Characters from the Specified Position)

This is a function that extracts a character string consisting of the specified number of characters from the specified position of the character string and outputs the extracted data.

- Icon

- Parameter

Scope	Name	Type	Description
Input	STR	STRING	Specifies the character string from which a character string is to be extracted.
	LEN	INT	Specifies the number of characters to be extracted.
	POS	INT	Specified the position from which extraction is to be started.
	-	STRING	Extracts a character string consisting of the number of characters specified in LEN from STR starting from the position specified in POS and outputs the extracted data.

- Program example

This program is designed to extract a character string consisting of the number of characters (3 characters) specified in "input2" from the character string of the input variable "input1", starting from the position (2nd character from the left end) specified in "input3", and to output the extracted data to the output variable "output1".

3.9 Character string instructions

LD program

ST program

output1 \square 'bcd' $:=$ MID (input1 \square 'abcdefg', input2 $\square 3$, input3 $\square 2, ~ ;$

3.9.5 CONCAT (Concatenating Character Strings)

This is a function that concatenates the character strings.

- Icon

- Parameter

Scope	Name	Type	Description
Input	STR1	STRING	Specifies the character string to be concatenated.
	STR2	STRING	Specifies the character string to be concatenated.
Output	-	STRING	Concatenate the STR2 character string to the right of the STR1 character string and output the concatenated data.

Program example

This program is designed to concatenate the character string of "input2" to the character string of the input variable "input1" and to output the concatenated data to the output variable "output1".

LD program

ST program

```
output1 }\square\mathrm{ 'abcdefg' 
```


3.9.6 INSERT (Inserting a Character String)

This is a function that inserts a character string in the specified position and outputs the inserted data.

- Icon

- Parameter

Scope	Name	Type	Description
Input	STR1	STRING	Specifies the character string in which a character string is to be inserted.
	STR2	STRING	Specifies the character string to be inserted.
	POS	INT	Specifies the position to be inserted. n-th character from the left
	-	STRING	Inserts the STR2 character string in the position specified in POS in the STR1 character string.

- Program example

This program is designed to insert the character string of "input2" in the position (3rd character from the left end) specified in "input3" from the left of the the character string of the input variable "input1" and to output the inserted data to the output variable "output1".

LD program

ST program

```
output1 'abcfgde' 
```


3.9.7 DELETE (Deleting a Character String)

This is a function that deletes a character string from the specified position and outputs the deleted data.

- Icon

- Parameter

Scope	Name	Type	Description
Input	STR	STRING	Specifies the character string from which a character string is to be deleted.
	LEN	INT	Specifies the length of the character string to be deleted.
	POS	INT	Specified the position from which deletion is to be started. n-th character from the left
	-	STRING	Deletes a character string consisting of the number of characters specified in LEN from the left end of the STR character string starting from the position specified in POS and outputs the deleted data.

- Program example

This program is designed to delete a character string consisting of the number of characters (2 characters) specified in "input2" from the character string of the input variable "input1" starting from the position (3rd character from the left) specified in "input3" and to output the deleted data to the output variable "output1".

LD program

ST program

```
output1 'abe' }\square=\operatorname{DELETE (input1 }\square\mathrm{ 'abcde' 
```


3.9.8 REPLACE (Replacing a Character String)

This is a function that replaces the character strings and outputs the replaced character strings.

- Icon

- Parameter

Scope	Name	Type	Description
Input	STR1	STRING	Specifies the character string to be replaced.
	STR2	STRING	Specifies the character string to be added by replacement.
	L	INT	Specifies the number of characters to be deleted by replacement.
	P	INT	Specifies the position where the character string specified by STR2 is to be added by replacement.
Output	-	STRING	Replaces the number of characters specified in L with the character string specified in STR2 from the left end of the character string specified in STR1 starting from the position specified in P and outputs the replaced data.

- Program example

This program is designed to replace a character string consisting of the number of characters specified in "input3" with the character string specified in "input2" from the position specified in "input4" in the character string of the input variable "input1" and to output the replaced data to the output variable "output1".

LD program

ST program

3.9.9 FIND (Search for Character String)

This is a function that searches for a specified character string and outputs the searched position.

■ Icon

Parameter

Scope	Name	Type	Description
Input	STR1	STRING	Specifies the character string in which a character string is to be searched for.
	STR2	STRING	Specifies s character string to search for in the character string specified in STR1.
Output	-	INT	Searches for the character string specified in STR2 in the character string specified in STR1 and outputs the position from the left end.

- Program example

This program is designed to search for the character string specified in "input2" in the character string of the input variable "input1" and to output the position from the left to the output variable "output1".

LD program

ST program

```
output1 }3\mathrm{ 3 := FIND (input1 }\square\mathrm{ 'abcde' , input2 }\square\mathrm{ 'cd' 
```


1 Info.

- Outputs 0 if the character string is not found.
- If the character string is found in multiple places, the position found first (the leftmost position) is output.

3.10 Other Instructions

3.10.1 SIZEOF (Get the Size)

This is a function that outputs the size (number of bytes) of the input argument.

- Icon

- Parameter

Scope	Type	Description
Input	(Note 1)	Specifies the argument whose size is to be calculated.
Output	(Note 1)	Outputs the size of (1).

(Note 1) Usable data types
All standard data types
(BOOL, BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL, TIME, LTIME, DATE, TIME_OF_DAY, DATE_AND_TIME, STRING, WSTRING)

- Program example

This program is designed to output the size of the ULINT type input variable "input1" to the UINT type output variable "output1".

LD program

ST program

```
output1 8 := SIZEOF (input1 
```


3.10.2 ADR (Get the Address)

This is a function that outputs the address of the variable.

- Icon

3.10 Other Instructions

Parameter

Scope	Type	Description
Input	(Note 1)	Input the variable from which to get the address.
Output	(Note 1)	Outputs the address (pointer) of the input variable.

(Note 1) Usable data types
All standard data types
(BOOL, BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL, TIME, LTIME, DATE, TIME_OF_DAY, DATE_AND_TIME, STRING, WSTRING)

- Usable data type

All standard data types
(BOOL, BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, LREAL, TIME, LTIME, DATE, TIME_OF_DAY, DATE_AND_TIME, STRING, WSTRING)

- Program example

This program is designed to output the address of the input variable "input1" to the output variable "output1".

LD program

ST program

```
output1 16*F1061884 := ADR(input1\square0})\mathrm{ ;
```


3.11 SD Memory Card Slot Instruction

3.11.1 SYS_GetSDCoverState (Get SD Card Cover Open / Close State)

This is a function that gets an open / close state of the card cover for the SD memory card slot.

- Icon

- Parameter

Scope	Name	Type	Description
Output	SYS_GetS DCoverStat e	BOOL	TRUE: The card cover is closed. FALSE: The card cover is open.

3.11.2 SYS_GetSDAccessRdy (Get SD Card Access Ready State)

This is a function block that gets the state whether an access to the SD memory card is allowed.

- Icon

- Parameter

Scope	Name	Type	Description
Output	SYS_GestS DAccessRd y	BOOL	TRUE: Access to the SD memory card is enabled. FALSE: Access to the SD memory card is disabled.

(MEMO)

4 Function Blocks (Basic Instructions)

4.1 Timer Instructions 4-2
4.1.1 TON (Timer ON) 4-2
4.1.2 TOF (Timer OFF) 4-3
4.1.3 TP (Timer Pulse) 4-4
4.1.4 RTC (Realtime Clock) 4-6
4.2 Counter Instructions 4-7
4.2.1 CTU (Up Counter) 4-7
4.2.2 CTD (Down Counter) 4-8
4.2.3 CTUD (Up-down Counter) 4-9
4.3 Edge Detection Instructions 4-11
4.3.1 R_TRIG (Rising Edge Detection) 4-11
4.3.2 F_TRIG (Falling Edge Detection) 4-11
4.4 Bistable Circuit Instructions 4-13
4.4.1 SR (Set-priority Bistable Circuit) 4-13
4.4.2 RS (Reset-priority Bistable Circuit) 4-14

4.1 Timer Instructions

4.1 Timer Instructions

Timer instructions can be used to perform timer operations.

4.1.1 TON (Timer ON)

This is a function block (FB) that starts the timer when the input becomes TRUE. After a specified time elapses, the output becomes TRUE.

■ Icon

- Parameter

Scope	Name	Type	Description
Input	IN	BOOL	Starts the timer when FALSE becomes TRUE and the timer continues counting while it remains TRUE. Resets the timer when it becomes FALSE.
	PT	TIME	Specifies the timer time.
	Q	BOOL	Outputs TRUE when the time specified in the input argument PT elapses.
	ET	TIME	Specifies the elapsed time of the timer.

Program example

This program is designed to start the timer when the input variable "input1" becomes TRUE and, after an elapse of 10 seconds, to cause the output variable "output1" to become TRUE. The instance name is TON_0.

LD program

ST program

```
TON_0(IN TRUE := input1 TRUE ,
    &FALSE => output1 FALSE
                PT\square
                := T#10S,
                => ElapsedTime }\quad\mathrm{ T#3s659ms
``` ;
- Time-sequence diagram

IN

\subsection*{4.1.2 TOF (Timer OFF)}

This is a function block (FB) that starts the timer when the input becomes FALSE. After a specified time elapses, the output becomes FALSE.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & IN & BOOL & \begin{tabular}{l}
Starts the timer when TRUE becomes FALSE and the timer continues \\
counting while it remains FALSE. \\
Resets the timer when it becomes TRUE.
\end{tabular} \\
\cline { 2 - 4 } & PT & TIME & Specifies the timer time. \\
\hline \multirow{3}{*}{ Output } & Q & BOOL & \begin{tabular}{l}
Outputs FALSE when the time specified in the input argument PT \\
elapses.
\end{tabular} \\
\cline { 2 - 4 } & ET & TIME & Specifies the elapsed time of the timer. \\
\hline
\end{tabular}

\section*{- Program example}

This program is designed to start the timer when the input variable "input1" changes from TRUE to FALSE and, after an elapse of 10 seconds, to cause the output variable "output1" to become FALSE. The instance name is TOF_0.

\subsection*{4.1 Timer Instructions}

\section*{LD program}

\section*{ST program}
```

TOF_0(IN FALSE := input1 FALSE
PTM T\#10s}:=\textrm{T}\#10\textrm{S}
TRUE => output1 TRUE,
ET\square T\#2s113ms => ElapsedTime }

```
- Time-sequence diagram

\subsection*{4.1.3 TP (Timer Pulse)}

This is a function block that starts the timer at the rising edge. The output remains TRUE while the timer keeps counting. After a specified time elapses, the output becomes FALSE.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & IN & BOOL & Starts the timer when FALSE changes to TRUE (rising edge). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{} & & & \begin{tabular}{l}
Resets the timer when the timer expires and TRUE changes to \\
FALSE.
\end{tabular} \\
\cline { 2 - 4 } & PT & TIME & Specifies the timer time. \\
\hline \multirow{3}{*}{ Output } & Q & BOOL & \begin{tabular}{l}
Outputs TRUE from when the timer is started until when the time \\
specified in the input argument PT elapses. \\
Outputs FALSE after the specified time elapses.
\end{tabular} \\
\cline { 2 - 4 } & ET & TIME & Specifies the elapsed time of the timer. \\
\hline
\end{tabular}

\section*{- Program example}

This program is designed to start the timer when the input variable "input1" changes from FALSE to TRUE and, during the time from when the timer is started to when the timer expires (for 10 seconds), to cause the output variable "output1" to remain TRUE.
The instance name is TP_0.

\section*{LD program}

\section*{ST program}
```

TP_0(IN TRUE := input1 TRUE,
PT\squareT\#10s := T\#10S,
Q TRUE => output1 TRUE
ET\squareT\#2s822ms => ElapsedTime }\square\mathrm{ T\#2s822ms

```
- Time-sequence diagram

\subsection*{4.1 Timer Instructions}

\subsection*{4.1.4 RTC (Realtime Clock)}

This is a function block that starts counting time at the rising edge starting from the specified date and time. The output remains TRUE while the time counting continues. After a specified time elapses, the output becomes FALSE.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & EN & BOOL & \begin{tabular}{l}
Starts counting time from the date and time specified in the input \\
argument PDT when FALSE changes to TRUE (rising edge). \\
When TRUE changes to FALSE, DT\#1970-01-01-00:00:00 is set in the \\
output argument CDT.
\end{tabular} \\
\cline { 2 - 5 } & PDT & \begin{tabular}{l}
DATE_AND \\
-TIME
\end{tabular} & Date and time when time counting starts \\
\hline \multirow{3}{*}{ Output } & Q & BOOL & Outputs TRUE while time counting continues. \\
\cline { 2 - 5 } & CDT & \begin{tabular}{l}
DATE_AND \\
_TIME
\end{tabular} & \begin{tabular}{l}
Outputs the time count time from the date and time specified in the \\
input argument PDT.
\end{tabular} \\
\hline
\end{tabular}

\section*{- Program example}

This program is designed to start counting time, starting from 0 o'clock of March 29, 2020, when the input variable "input1" changes from FALSE to TRUE, and, to cause the output variable "output1" to remain TRUE while time counting continues.
The instance name is RTC_0.

\section*{LD program}

\section*{ST program}
```

RTC_0 (EN TRUE := input1 TRUE ,
PDT DT\#2020-3-29-0:0:0 := DT\#2020-03-29-00:00:00,
Q TRUE => output1 TRUE ,
CDT DT\#2020-3-29-0:1:31 => CountTime }\square\mathrm{ DT\#2020-3-29-0:1:31 ;

```

\subsection*{4.2 Counter Instructions}

Counter instructions can be used to perform counter operations.

\subsection*{4.2.1 CTU (Up Counter)}

This is a function block that increments the counter value by 1 every time the rising edge occurs.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & CU & BOOL & \begin{tabular}{l}
Increments the value of the output argument CV by 1 when FALSE \\
changes to TRUE (rising edge).
\end{tabular} \\
\cline { 2 - 4 } & RESET & BOOL & If TRUE, 0 is set in the output argument CV. \\
\cline { 2 - 4 } & PV & WORD & Target value of CV \\
\hline \multirow{3}{*}{ Output } & Q & BOOL & Outputs TRUE when the CV value reaches the PV value. \\
\cline { 2 - 4 } & CV & WORD & Outputs the current counter value. \\
\hline
\end{tabular}

\section*{- Program example}

This program is designed to increment the value of the output variable "output2" by 1 every time the input variable "input1" changes from FALSE to TRUE. The program is designed to cause the output variable "output1" to change to TRUE when the value (100) of the input variable "input2" is counted up.
The instance name is CTU_0.

\section*{LD program}

\subsection*{4.2 Counter Instructions}

\section*{ST program}
```

CTU_0(
CU TRUE:= input1 TRUE ,
RESET:= ,
PV 100:= 100,
Q FALSE => output1 FALSE,
CV 8 => output2\square 8

```

\subsection*{4.2.2 CTD (Down Counter)}

This is a function block that decrements the counter value by 1 every time the rising edge occurs.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & CD & BOOL & \begin{tabular}{l}
Decrements the value of the output argument CV by 1 when FALSE \\
changes to TRUE (rising edge).
\end{tabular} \\
\cline { 2 - 4 } & LOAD & BOOL & If TRUE, the value specified in PV is set in the output argument CV. \\
\cline { 2 - 4 } & PV & WORD & Initial value of the counter value \\
\hline \multirow{3}{*}{ Output } & Q & BOOL & Outputs TRUE when the CV value becomes 0. \\
\cline { 2 - 4 } & CV & WORD & Outputs the current counter value. \\
\hline
\end{tabular}

\section*{Program example}

This program is designed to decrement the value of the output variable "output2" by 1 every time the input variable "input1" changes from FALSE to TRUE, and to cause the output variable "output1" to change to TRUE when the value becomes 0 . The initial value (100) to count down from is specified in the input variable "input3".
The instance name is CTD_0.

\section*{LD program}

\section*{ST program}
```

CTD 0(
CD TRUE := input1 TRUE ,
LOAD FALSE := input2 FALSE,
PV 100 : = input3 100,
Q FALSE => output1FALSE,
CV\95=> output2\square95}\mathrm{ );

```

\subsection*{4.2.3 CTUD (Up-down Counter)}

This is a function block that increments or decrements the counter value by 1 every time the rising edge occurs.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & CU & BOOL & \begin{tabular}{l}
Increments the value of the output argument CV by 1 when FALSE \\
changes to TRUE (rising edge).
\end{tabular} \\
\cline { 2 - 5 } & CD & BOOL & \begin{tabular}{l}
Decrements the value of the output argument CV by 1 when FALSE \\
changes to TRUE (rising edge).
\end{tabular} \\
\cline { 2 - 4 } & RESET & BOOL & If TRUE, 0 is set in the output argument CV. \\
\cline { 2 - 4 } & LOAD & BOOL & If TRUE, the value specified in PV is set in the output argument CV. \\
\cline { 2 - 4 } & PV & WORD & Initial value of the counter value \\
\hline Output & QU & BOOL & Outputs TRUE when the CV value reaches the PV value. \\
\hline
\end{tabular}

\subsection*{4.2 Counter Instructions}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{} & QD & BOOL & Outputs TRUE when the CV value becomes 0. \\
\cline { 2 - 4 } & CV & WORD & Outputs the current counter value. \\
\hline
\end{tabular}

\section*{- Program example}

Every time the input variable "input1" changes from FALSE to TRUE, the value of the output variable "output3" is incremented by 1.
Every time the input variable "input2" changes from FALSE to TRUE, the value of the output variable "output3" is decremented by 1
When the output variable "output3" becomes greater than or equal to the input variable "input5", the output variable "output1" becomes TRUE.
When the output variable "output3" becomes 0 , the output variable "output2" becomes TRUE. When the input variable "input3" becomes TRUE, the output variable "output3" becomes 0 . When the input variable "input4" becomes TRUE, the value (100) of the input variable "input5" is set in the output variable "output3".
The instance name is CTUD_0.

\section*{LD program}

\section*{ST program}
```

CTUD_0(
CU TRUE := input1 TRUE
CD FALSE: = input2 FALSE
RESET FALSE:= input3 FALSE,
LOAD FALSE : = input4 FALSE,
PV 100 := input5 100,
QU FALSE => output1 FALSE,
QD FALSE => output2 FALSE,
CV 3 => output3 3 );

```

\subsection*{4.3 Edge Detection Instructions}

Edge detection instructions can be used to perform edge detection.

\subsection*{4.3.1 R_TRIG (Rising Edge Detection)}

This is a function block that detects a rising edge.
■ Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & CLK & BOOL & Input that detects a rising edge \\
\hline Output & Q & BOOL & \begin{tabular}{l}
Outputs TRUE for one cycle only when a rising edge is detected in the \\
input argument CLK.
\end{tabular} \\
\hline
\end{tabular}

\section*{- Program example}

When the input variable "input1" changes from FALSE to TRUE, the output variable "output1" becomes TRUE for one cycle only.
The instance name is R_TRIG_0.

\section*{LD program}

\section*{ST program}
```

R_TRIG_0(
CLK TRUE := input1 TRUE ,
TRUE => output1 TRUE );

```

\subsection*{4.3.2 F_TRIG (Falling Edge Detection)}

This is a function block that detects a falling edge.

\section*{- Icon}

\subsection*{4.3 Edge Detection Instructions}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & CLK & BOOL & Input that detects a falling edge \\
\hline Output & Q & BOOL & \begin{tabular}{l}
Outputs TRUE for one cycle only when a falling edge is detected in the \\
input argument CLK.
\end{tabular} \\
\hline
\end{tabular}

\section*{- Program example}

When the input variable "input1" changes from FALSE to TRUE, the output variable "output1" becomes TRUE for one cycle only.
The instance name is F_TRIG_0.

\section*{LD program}

\section*{ST program}
```

F_TRIG_0(
CLK FALSE:= input1 FALSE,
TRUE => output1 TRUE);

```

\subsection*{4.4 Bistable Circuit Instructions}

Bistable circuit instructions can be used to perform edge detection.

\subsection*{4.4.1 SR (Set-priority Bistable Circuit)}

This is a function block that realizes a bistable (flip-flop) circuit. The priority is given to the set input.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & SET1 & BOOL & Specifies the set input for a bistable circuit. \\
\cline { 2 - 4 } & RESET & BOOL & Specifies the reset input for a bistable circuit. \\
\hline Output & Q1 & BOOL & \begin{tabular}{l}
When the input argument SET1 becomes TRUE, outputs and holds \\
TRUE. \\
When the input argument RESET becomes TRUE, outputs and holds \\
FALSE. \\
When both SET1 and RESET1 are TRUE, outputs and holds TRUE.
\end{tabular} \\
\hline
\end{tabular}

\section*{- Program example}

When the input variable "input1" becomes TRUE, the output variable "output1" becomes TRUE.
Even if the input variable "input1" becomes FALSE, "output1" remains TRUE.
When the input variable "input1" is FALSE and if input variable "input2" becomes TRUE, the output variable "output1" becomes FALSE.
The instance name is SR_0.

\section*{LD program}

\section*{ST program}
```

SR_0(
SET1 TRUE := input1 TRUE
RESET FALSE:= input2 FALSE
Q1 TRUE => output1 TRUE ;

```

\subsection*{4.4 Bistable Circuit Instructions}

\section*{- Time-sequence diagram}

\subsection*{4.4.2 RS (Reset-priority Bistable Circuit)}

This is a function block that realizes a bistable (flip-flop) circuit. The priority is given to the reset input.

\section*{- Icon}

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & SET1 & BOOL & Specifies the set input for a bistable circuit. \\
\cline { 2 - 4 } & RESET & BOOL & Specifies the reset input for a bistable circuit. \\
\hline Output & Q1 & BOOL & \begin{tabular}{l}
When the input argument SET1 becomes TRUE, outputs and holds \\
TRUE. \\
When the input argument RESET becomes TRUE, outputs and holds \\
FALSE. \\
When both SET1 and RESET1 are TRUE, outputs and holds FALSE.
\end{tabular} \\
\hline
\end{tabular}

\section*{- Program example}

When the input variable "input1" becomes TRUE, the output variable "output1" becomes TRUE. Even if the input variable "input1" becomes FALSE, "output1" remains TRUE.
When the input variable "input1" is FALSE and if the input variable "input2" becomes TRUE, the output variable "output1" becomes FALSE.
The instance name is RS_0.

\section*{LD program}

\section*{ST program}
```

RS_0(
SET TRUE := input1 TRUE ,
RESET1 FALSE:= input2 FALSE,
Q1 TRUE => output1 TRUE );

```
- Time-sequence diagram

(MEMO)

\section*{5 Motion Control Function Blocks (Single Axis Control)}

This section describes motion control function blocks for the single axis.
5.1 Servo ON 5-2
5.1.1 MC_Power (Servo ON) 5-2
5.2 Home Return 5-4
5.2.1 PMC_Home (Home Return) 5-4
5.3 Control Switch 5-7
5.3.1 SMC_SetControllerMode (Control Mode Setting) 5-7
5.4 Stop 5-8
5.4.1 MC_Stop (Forced Stop) 5-8
5.4.2 MC_Halt (Halt) 5-9
5.5 JOG / Inching 5-10
5.5.1 MC_Jog (Jogging) 5-10
5.5.2 SMC_Inch (Inching) 5-11
5.6 Position Control 5-13
5.6.1 MC_MoveAbsolute (Absolute Value Positioning) 5-13
5.6.2 MC_MoveRelative (Relative Value Positioning) 5-14
5.6.3 MC_MoveAdditive (Target Position Change) 5-15
5.6.4 MC_MoveSuperImposed (Superimposed positioning) 5-17
5.6.5 MC_PositionProfile (Position Profile Move) 5-19
5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure 5-20
5.6.7 SMC_MoveContinuousAbsolute (Absolute Value Position Velocity Move) 5-22
5.6.8 SMC_MoveContinuousRelative (Relative Value Position Velocity Move) 5-23
5.7 Velocity Control 5-25
5.7.1 MC_MoveVelocity (Velocity Control) 5-25
5.7.2 MC_VelocityProfile (Velocity Profile Movement) 5-26
5.7.3 MC_AccelerationProfile (Acceleration Profile Movement) 5-27
5.8 Torque Control 5-30
5.8.1 PMC_SetTorque (Torque Control) 5-30

\subsection*{5.1 Servo ON}

\subsection*{5.1 Servo ON}

\subsection*{5.1.1 MC_Power (Servo ON)}

This is a function block (FB) that sets the axis to the servo ON state to be ready for operation.
■ Icon
\begin{tabular}{lrr|}
\hline Axis \(A X T S _R E F _S M 3 ~\) & MC_Power & \\
Enable \(B O O L\) & \(B O O L\) & Status
\end{tabular}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Input
\end{tabular}} & Enable & BOOL & FALSE & TRUE: The FB can be executed. \\
\cline { 2 - 5 } & bRegulatorOn & BOOL & FALSE & \begin{tabular}{l}
TRUE: Servo ON \\
FALSE: Servo OFF
\end{tabular} \\
\cline { 2 - 6 } & bDriveStart & BOOL & FALSE & TRUE: Quick stop is disabled. \\
\hline \multirow{4}{*}{ Output } & Status & BOOL & FALSE & TRUE: The axis can be executed. \\
\cline { 2 - 5 } & bRegulatorRealState & BOOL & FALSE & \begin{tabular}{l}
TRUE: The FB is ready to be \\
executed.
\end{tabular} \\
\cline { 2 - 5 } & bDriveStartRealState & BOOL & FALSE & \begin{tabular}{l}
TRUE: Operation is not stopped \\
due to quick stop.
\end{tabular} \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Error & SOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & FALSE & An error ID is output. \\
\hline
\end{tabular}

\section*{- Program example}

The following program is designed to set the axis that corresponds to the input variable Motion_Drive to the servo ON state.

\section*{1 Info.}
- If the input arguments Enable, bRegulatorOn, and bDriveStart are TRUE and the output argument Status is FALSE, a hardware problem may occur.
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{5.2 Home Return}

\subsection*{5.2.1 PMC_Home (Home Return)}

This is a function block (FB) that performs home return of the axis. The home return function of the servo amplifier is used.

■ Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & \begin{tabular}{l}
AXIS_REF_RTE \\
X_Panasonic
\end{tabular} & - & Specifies the axis. \\
\hline Input & Execute & BOOL & FALSE & \begin{tabular}{l}
TRUE: Starts execution at the rising \\
edge. \\
FALSE: Stops processing.
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & Done & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution is completed and \\
transitioned to the Standstill state.
\end{tabular} \\
\cline { 2 - 6 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{Execution operation}
- Execute \(=\) TRUE: Starts the home return mode. Execute \(=\) FALSE: Ends the home return mode.
- When PMC_Home is successfully completed (when Done changes to TRUE), the home return mode is automatically ended.
- When PMC_Home is abnormally terminated (when Error changes to TRUE), end the home return mode by setting Execute = FALSE and making a call.

\section*{- Execution errors}

The PMC_Home function block outputs the following errors.
\begin{tabular}{|l|l|}
\hline Error & Description \\
\hline \multirow{3}{*}{ SMC_WRONG_CONTROLLER_MODE } & \begin{tabular}{l}
Executed in a mode other than the position control \\
mode. \\
Change to SMC_position using \\
SMC_SetControllerMode.
\end{tabular} \\
\hline \multirow{4}{*}{ SMC_DI_HOMING_ERROR } & \begin{tabular}{l}
The version of the amplifier paired with an absolute \\
encoder is lower than V1.24.
\end{tabular} \\
\cline { 2 - 4 } & Trigger setting is incorrect. \\
\cline { 2 - 4 } & Amplifier parameters (Pr4.00 to Pr4.07) are incorrect. \\
\cline { 2 - 3 } & Abnormal state in HOME, POT, or NOT is detected. \\
\cline { 2 - 3 } & \begin{tabular}{l}
The home return cannot be completed even if POT \\
and NOT settings were inverted three times or more.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l}
The home return was completed at an incorrect \\
position.
\end{tabular} \\
\hline SMC_MS_DIRECTION_NOT_APPLICABLE & The return direction setting is incorrect. \\
\hline SMC_AXIS_NOT_READY_FOR_MOTION & \begin{tabular}{l}
The axis is in a state (Stopping, Disabled, or Errorstop) \\
where PMC_Home cannot be executed.
\end{tabular} \\
\hline SMC_REGULATOR_OR_START_NOT_SET & The servo was turns OFF and the brake was applied. \\
\hline SMC_3SH_INVALID_VELACC_VALUES & \begin{tabular}{l}
The input target velocity, home return creep speed, \\
acceleration, or deceleration is incorrect.
\end{tabular} \\
\hline SMC_AXIS_REF_CHANGED_DURING_OPERATION & The Axis was changed during operation. \\
\hline
\end{tabular}

\section*{- Execution conditions}
- As the PMC_Home function block uses the RTEX home return command, it cannot be executed together with PMC_ReadLatchPosition or PMC_StopLatchPosition.
- If PMC_Home is executed while PMC_ReadLatchPosition or PMC_StopLatchPosition is being executed, the CommandAborted parameter becomes TRUE. Furthermore, if PMC_Home of another instance is executed while one PMC_Home is being executed, the CommandAborted parameter of the PMC_Home executed later becomes TRUE.

\section*{- Amplifier parameter conditions}

When using PMC_Home, set amplifier parameters as shown in the following table.
\begin{tabular}{|l|l|l|l|}
\hline Parameter & Parameter name & Setting A & Setting B \\
\hline Pr4.00 & SI1 input selection & SI-MON5 & SI-MON5 \\
\hline Pr4.01 & SI2 input selection & POT & \\
\hline Pr4.02 & SI3 input selection & NOT & \\
\hline Pr4.03 & SI4 input selection & SI-MON1 & SI-MON1 \\
\hline Pr4.04 & SI5 input selection & HOME & HOME \\
\hline Pr4.05 & SI6 input selection & EXT2 & POT \\
\hline Pr4.06 & SI7 input selection & EXT3 & NOT \\
\hline Pr4.07 & SI8 input selection & SI-MON4 & SI-MON4 \\
\hline
\end{tabular}

Return methods that can be executed for the settings \(A\) and \(B\) are as shown in the following table.

\subsection*{5.2 Home Return}
\begin{tabular}{|c|c|c|}
\hline Return method & Setting A & Setting B \\
\hline DOG method 1 & \(\bigcirc\) & O(Note 2) \\
\hline DOG method 2 & \(\times\) (Note 1) & \(\bigcirc\) \\
\hline DOG method 3 & \(\bigcirc\) & O(Note 2) \\
\hline Limit method 1 & \(\bigcirc\) & O(Note 2) \\
\hline Limit method 2 & \(\times\) (Note 1) & \(\bigcirc\) \\
\hline Home return method & \(\bigcirc\) & O(Note 2) \\
\hline Stop-on-contact method 1 & \(\bigcirc\) & O(Note 2) \\
\hline Stop-on-contact method 2 & \(\bigcirc\) & \(\bigcirc\) \\
\hline Data setting method & \(\bigcirc\) & \(\bigcirc\) \\
\hline High-speed home return method & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
(Note 1) When using POT, NOT, or HOME as a home reference trigger, assign them as follows.
HOME: SI5 input selection
POT: SI6 input selection
NOT: SI7 input selection
(Note 2) When EXT2 or EXT3 is used as a home reference trigger, it can be used only for the above setting A.

\section*{1 Info.}
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{5.3 Control Switch}

\subsection*{5.3.1 SMC_SetControllerMode (Control Mode Setting)}

This is a function block (FB) that sets up the control mode for controlling the position, velocity, and torque.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Input \(/\) \\
output
\end{tabular}} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & bExecute & BOOL & FALSE & \begin{tabular}{l}
Sets up the control mode at the \\
rising edge.
\end{tabular} \\
\cline { 2 - 5 } & nControllerMode & \begin{tabular}{l}
SMC_CONTRO \\
LLER_MODE
\end{tabular} & SMC_position & Specifies the control mode. \\
\hline \multirow{4}{*}{ Output } & bDone & BOOL & FALSE & \begin{tabular}{l}
TRUE: Control mode setup is \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & bBusy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & bError & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & nErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{SMC_CONTROLLER_MODE (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline SMC_nocontrol & 0 & Usage prohibited \\
\hline SMC_torque & 1 & Torque mode \\
\hline SMC_velocity & 2 & Velocity mode \\
\hline SMC_position & 3 & Position mode \\
\hline SMC_current & 4 & Usage prohibited \\
\hline
\end{tabular}

\subsection*{5.4 Stop}

\subsection*{5.4 Stop}

\subsection*{5.4.1 MC_Stop (Forced Stop)}

This is a function block (FB) that causes the axis to make a deceleration stop. After stopping, the axis remains stopped while Execute is TRUE. While the axis is being decelerated or while it is stopped, other function blocks cannot be executed.
- Icon
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{MC_Stop} \\
\hline - Axis AXIS_REF_SM3 & BOOL Done \\
\hline - Execute BOOL & BOOL Busy \\
\hline - Deceleration LREAL & BOOL Error \\
\hline -Jerk LREAL & SMC ERROR Errorid \\
\hline
\end{tabular}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{4}{*}{ Input } & Execute & BOOL & FALSE & \begin{tabular}{l}
Starts execution at the rising edge. \\
While it is TRUE, other FB cannot \\
be executed.
\end{tabular} \\
\cline { 2 - 5 } & Deceleration & LREAL & 0 & Specifies the deceleration \(\left(\mathrm{u} / \mathrm{s}^{2}\right)\). \\
\cline { 2 - 5 } & Jerk & LREAL & 0 & Specifies the jerk \(\left(\mathrm{u} / \mathrm{s}^{3}\right)\). \\
\hline \multirow{4}{*}{ Output } & Done & BOOL & FALSE & \begin{tabular}{l}
TRUE: The axis velocity has \\
reached 0.
\end{tabular} \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & Error & BOOL & FALSE & TRUE: An error has occurred. \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{1 Info.}
- In the torque control mode (SMC_torque), the axis cannot be stopped using MC_Stop. For stopping methods, refer to PMC_SetTorque.
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)
REFERENCE
5.8.1 PMC_SetTorque (Torque Control)

\subsection*{5.4.2 MC_Halt (Halt)}

This is a function block (FB) that causes the axis to make a deceleration stop. After the axis is stopped or while the axis is being decelerated, other motion instructions can be executed.
- Icon
\begin{tabular}{lrr|}
\hline & MC_Halt & \\
- Axis \(A X I S _R E F-S M 3\) & \(B O O L\) Done & - \\
- Execute \(B O O L\) & \(B O O L\) Busy & - \\
- Deceleration \(\angle R E A L\) & \(B O O L \quad\) CommandAborted & - \\
- Jerk \(\angle R E A L\) & \(B O O L\) Error & \\
\hline
\end{tabular}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Input \(/\) \\
output
\end{tabular}} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{4}{*}{ Input } & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\cline { 2 - 5 } & Deceleration & LREAL & 0 & Specifies the deceleration \(\left(\mathrm{u}^{2} \mathrm{~s}^{2}\right)\). \\
\cline { 2 - 5 } & Jerk & LREAL & 0 & Specifies the jerk \(\left(\mathrm{u} / \mathrm{s}^{3}\right)\). \\
\hline \multirow{4}{*}{ Output } & Done & BOOL & FALSE & \begin{tabular}{l}
TRUE: The axis velocity has \\
reached 0.
\end{tabular} \\
\cline { 2 - 6 } & Busy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 6 } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & TRUE: An error has occurred. \\
\cline { 2 - 6 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{1 Info.}
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{5.5 JOG / Inching}

\subsection*{5.5 JOG / Inching}

\subsection*{5.5.1 MC_Jog (Jogging)}

This is a function block (FB) that causes the axis to keep traveling in a forward or reverse direction at a constant velocity. While the input is TRUE, the axis keeps traveling in a forward or reverse direction at a constant velocity.
- Icon

\section*{Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline Input / output & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow[t]{6}{*}{Input} & JogForward & BOOL & FALSE & While JogForward is TRUE, the axis travels in a forward direction. If JogBackaward is TRUE at the same time, the axis does not operate. \\
\hline & JogBackward & BOOL & FALSE & While JogBackward is TRUE, the axis travels in a reverse direction. If JogForward is TRUE at the same time, the axis does not operate. \\
\hline & Velocity & LREAL & 0 & Specifies the velocity (\(\mathrm{u} / \mathrm{s}\)). \\
\hline & Acceleration & LREAL & 0 & Specifies the acceleration (\(\mathrm{u} / \mathrm{s}^{2}\)). \\
\hline & Deceleration & LREAL & 0 & Specifies the deceleration (\(\mathrm{u} / \mathrm{s}^{2}\)). \\
\hline & Jerk & LREAL & 0 & Specifies the jerk (\(u / \mathrm{s}^{3}\)). \\
\hline \multirow[t]{4}{*}{Output} & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{(Info.}
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{5.5.2 SMC_Inch (Inching)}

This is a function block (FB) that causes the axis to travel in a forward or reverse direction for a specified relative distance. When the input turns TRUE, the axis travels in a forward or reverse direction for a specified relative distance.
- Icon

- Parameter
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline Input / output & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow[t]{6}{*}{Input} & InchForward & BOOL & FALSE & \begin{tabular}{l}
When the input changes from FALSE to TRUE, the axis starts traveling in a forward direction for the distance specified in Distance. \\
When the input changes to FALSE before the axis travels the specified distance, the axis stops traveling. \\
If InchBackaward is TRUE at the same time, the axis does not operate.
\end{tabular} \\
\hline & InchBackward & BOOL & FALSE & \begin{tabular}{l}
When the input changes from FALSE to TRUE, the axis starts traveling in a reverse direction for the distance specified in Distance. \\
When the input changes to FALSE before the axis travels the specified distance, the axis stops traveling. \\
If InchForward is TRUE at the same time, the axis does not operate.
\end{tabular} \\
\hline & Distance & LREAL & 0 & Specifies the travel distance (u). \\
\hline & Velocity & LREAL & 0 & Specifies the velocity (\(\mathrm{u} / \mathrm{s}\)). \\
\hline & Acceleration & LREAL & 0 & Specifies the acceleration (\(u / \mathrm{s}^{2}\)). \\
\hline & Deceleration & LREAL & 0 & Specifies the deceleration (\(\mathrm{u} / \mathrm{s}^{2}\)). \\
\hline
\end{tabular}

\subsection*{5.5 JOG / Inching}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{4}{*}{ Output } & Jerk & Busy & LREAL & 0 \\
SOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

1 Info.
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{5.6 Position Control}

\subsection*{5.6.1 MC_MoveAbsolute (Absolute Value Positioning)}

This is a function block (FB) that causes the axis to travel to a position specified as an absolute position.
- Icon
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{MC_MoveAbsolute} \\
\hline -Axis AXIS_REF_SM3 & BOOL Done \\
\hline - Execute BOOL & BOOL Busy \\
\hline - Position LREAL & BOOL CommandAborted \\
\hline - Velocity LREAL & BOOL Error \\
\hline - Acceleration LREAL & SMC_ERROR Errorid \\
\hline - Deceleration LREAL & \\
\hline -Jerk LREAL & \\
\hline Direction MC Direction & \\
\hline
\end{tabular}

\section*{- Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline Input / output & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow[t]{7}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & Position & LREAL & 0 & Specifies the target position (u). \\
\hline & Velocity & LREAL & 0 & Specifies the maximum velocity (u/s). \\
\hline & Acceleration & LREAL & 0 & Specifies the acceleration (u/s \({ }^{2}\)). \\
\hline & Deceleration & LREAL & 0 & Specifies the deceleration (\(u / \mathrm{s}^{2}\)). \\
\hline & Jerk & LREAL & 0 & Specifies the jerk (\(\mathrm{u} / \mathrm{s}^{3}\)). \\
\hline & Direction & MC_Direction & shortest & \begin{tabular}{l}
Specifies the traveling direction of the axis. \\
Direction can be specified only for the modulo type. For the finite axis, the specification is ignored.
\end{tabular} \\
\hline \multirow[t]{5}{*}{Output} & Done & BOOL & FALSE & TRUE: The axis has reached the target position. \\
\hline & Busy & BOOL & FALSE & TRUE: The FB is in operation. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\subsection*{5.6 Position Control}

\section*{- MC_Direction (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline positive & 1 & Travels in the positive direction. \\
\hline negative & -1 & Travels in the negative direction. \\
\hline shortest & 3 & \begin{tabular}{l}
Travels in the shortest direction from the current command \\
position to the target command position when \\
MC_MoveAbsolute is executed.
\end{tabular} \\
\hline fastest & 2 & \begin{tabular}{l}
Travels in the fastest direction from the current command \\
position to the target command position when \\
MC_MoveAbsolute is executed. \\
If the axis is being driven by another function block when \\
MC_MoveAbsolute is executed, selects the fastest \\
direction within the GM1. \\
If the axis is being stopped when MC_MoveAbsolute is \\
executed, makes the same movement as for the shortest.
\end{tabular} \\
\hline current & \begin{tabular}{l}
Travels to the current direction. \\
If the axis is being driven by another function block when \\
MC_MoveAbsolute is executed, travels in the same \\
direction. \\
If the axis is being stopped when MC_MoveAbsolute is \\
executed, travels in the direction moved by the previously \\
executed function block.
\end{tabular} \\
\hline
\end{tabular}

\section*{1 Info.}
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{5.6.2 MC_MoveRelative (Relative Value Positioning)}

This is a function block (FB) that causes the axis to travel to a position specified as a relative position.

\section*{- Icon}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{6}{*}{ Input } & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\cline { 2 - 5 } & Distance & LREAL & 0 & Specifies the relative distance (u). \\
\cline { 2 - 5 } & Velocity & LREAL & 0 & \begin{tabular}{l}
Specifies the maximum velocity \\
\((u / \mathrm{s})\).
\end{tabular} \\
\cline { 2 - 5 } & Acceleration & LREAL & 0 & Specifies the acceleration \(\left(\mathrm{u} / \mathrm{s}^{2}\right)\). \\
\cline { 2 - 5 } & Deceleration & LREAL & 0 & Specifies the deceleration \(\left(\mathrm{u} / \mathrm{s}^{2}\right)\). \\
\cline { 2 - 5 } & Jerk & LREAL & 0 & Specifies the jerk \(\left(\mathrm{u} / \mathrm{s}^{3}\right)\). \\
\hline \multirow{4}{*}{} & Done & BOOL & FALSE & \begin{tabular}{l}
TRUE: The axis has traveled the \\
specified relative distance.
\end{tabular} \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & TRUE: An error has occurred. \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{1 Info.}
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{5.6.3 MC_MoveAdditive (Target Position Change)}

This is a function block (FB) that adds a relative distance to the target position of the immediately preceding instruction. No addition is made to the velocity, acceleration, or deceleration; they change to the specified values.
- Icon
\begin{tabular}{lrr|}
\hline \multicolumn{3}{|r|}{ MC_MoveAdditive } \\
- Axis \(A X I S _R E F-S M 3\) & \(B O O L\) Done & - \\
- Execute \(B O O L\) & \(B O O L\) Busy & - \\
- Distance \(\angle R E A L\) & \(B O O L\) & CommandAborted
\end{tabular}\(-\)

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{2}{*}{ Input } & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\cline { 2 - 5 } & Distance & LREAL & 0 & \begin{tabular}{l}
Specifies the relative distance \((\mathrm{u})\) to \\
be added.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.6 Position Control}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{5}{*}{} & Velocity & LREAL & 0 & \begin{tabular}{l}
Specifies the maximum velocity \\
\((\mathrm{u} / \mathrm{s})\).
\end{tabular} \\
\cline { 2 - 5 } & Acceleration & LREAL & 0 & Specifies the acceleration \(\left(\mathrm{u} / \mathrm{s}^{2}\right)\). \\
\cline { 2 - 5 } & Deceleration & LREAL & 0 & Specifies the deceleration \(\left(\mathrm{u} / \mathrm{s}^{2}\right)\). \\
\cline { 2 - 5 } & Jerk & LREAL & 0 & Specifies the jerk \(\left(\mathrm{u} / \mathrm{s}^{3}\right)\). \\
\hline \multirow{4}{*}{ Output } & Done & BOOL & FALSE & \begin{tabular}{l}
TRUE: The axis has traveled the \\
specified relative distance.
\end{tabular} \\
\cline { 2 - 6 } & Busy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & TRUE: An error has occurred. \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{- Operations when the function block is executed}

This example shows the position, velocity, acceleration, and deceleration traces when MC_MoveAdditive is executed while MC_MoveRelative (Relative Value Positioning) is being executed.

\section*{Function block input parameters}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
Execution \\
sequence
\end{tabular} & Function blocks & \begin{tabular}{l}
Distance \\
(Relative \\
distance)
\end{tabular} & \begin{tabular}{l}
Velocity \\
(Velocity)
\end{tabular} & \begin{tabular}{l}
Acceleration \\
(Acceleration)
\end{tabular} & \begin{tabular}{l}
Deceleration \\
(Deceleration)
\end{tabular} \\
\hline 1 & MC_MoveRelative & 1000 & 40 & 10 & 10 \\
\hline 2 & MC_MoveAdditive & 600 & 100 & 20 & 20 \\
\hline
\end{tabular}

\section*{Trace}

\section*{Acceleration / Deceleration}

1. MC_MoveRelative is started.
2. MC_MoveAdditive is started.

MC_MoveRelative is interrupted at the timing when MC_MoveAddive is started. The output parameter CommandAborted of MC_MoveRelative turns TRUE.

The velocity and acceleration / deceleration change to values (velocity: 100, acceleration / deceleration: 20) specified by MC_MoveAdditive.
3. MC_MoveAdditive is completed.

The axis travels to the position where the relative distance specified by MC_MoveAdditive is added to the position specified by MC_MoveRelative \((1000+600=1600)\).

\section*{1 Info.}
- Use the MC_MoveSuperImposed function block to cause the axis to travel after adding the velocity, acceleration, and deceleration to the previously executed instruction.

\subsection*{5.6.4 MC_MoveSuperImposed (Superimposed positioning)}

This is a function block (FB) that adds a relative distance, a velocity, an acceleration, and a deceleration to the operations of the immediately preceding instruction.
- Icon
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{MC_MoveSuperImposed} \\
\hline Axis AXIS_REF_SM3 & BOOL Done \\
\hline Execute BOOL & BOOL Busy \\
\hline Distance LREAL & BOOL CommandAborted \\
\hline - VelocityDiff LREAL & BOOL Error \\
\hline - Acceleration \(\angle R E A L\) & SMC ERROR Errorid \\
\hline - Deceleration LREAL & \\
\hline Jerk LREAL & \\
\hline
\end{tabular}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{6}{*}{\begin{tabular}{l}
Input \(/\) \\
output
\end{tabular}} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{5}{*}{ Input } & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\cline { 2 - 5 } & Distance & LREAL & 0 & Specifies the relative distance (u). \\
\cline { 2 - 5 } & Acceleration & LREAL & 0 & \begin{tabular}{l}
Specifies the maximum velocity \\
\((\mathrm{u} / \mathrm{s})\).
\end{tabular} \\
\cline { 2 - 5 } & Deceleration & LREAL & 0 & Specifies the acceleration \(\left(\mathrm{u} / \mathrm{s}^{2}\right)\). \\
\cline { 2 - 5 } & Jerk & LREAL & 0 & Specifies the deceleration \(\left(\mathrm{u} / \mathrm{s}^{2}\right)\). \\
\hline \multirow{4}{*}{} & Done & BOOL & FALSE & \begin{tabular}{l}
TRUE: The axis has traveled the \\
specified relative distance.
\end{tabular} \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & TRUE: An error has occurred. \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\subsection*{5.6 Position Control}

\section*{\(\square\) Note}
- When MC_MoveSuperImposed is being executed (Busy = TRUE), be sure to call at every interval.
If a call is not made, the axis may perform an unexpected operation.

\section*{- Operations when the function block is executed}

This example shows the position, velocity, and acceleration traces when
MC_MoveSuperlmposed is executed while MC_MoveRelative (Relative Value Positioning) is being executed.

\section*{Function block input parameters}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
Execution \\
sequence
\end{tabular} & Function blocks & \begin{tabular}{l}
Distance \\
(Relative \\
distance)
\end{tabular} & \begin{tabular}{l}
Velocity \\
(Velocity)
\end{tabular} & \begin{tabular}{l}
Acceleration \\
(Acceleration)
\end{tabular} & \begin{tabular}{l}
Deceleration \\
(Acceleration)
\end{tabular} \\
\hline 1 & MC_MoveRelative & 1000 & 40 & 10 & 10 \\
\hline 2 & MC_MoveSuperImposed & 600 & 100 & 20 & 20 \\
\hline
\end{tabular}

\section*{Trace}

\section*{Acceleration / Deceleration}

1. MC_MoveRelative is started.
2. MC_MoveSuperlmposed is started.

The specified velocity, acceleration, and deceleration are added at the timing when MC_MoveSuperlmposed is started.
3. MC_MoveSuperImposed is completed.
4. MC_MoveRelative is completed.

The axis travels to the position where the relative distance specified by MC_MoveSuperlmposed is added to the position specified by MC_MoveRelative \((10 \overline{0} 0+600=1600)\).

\section*{\((1\) Info.}
- Use the MC_MoveAdditive function block to cause the axis to travel at the specified values without adding the velocity, acceleration, and deceleration to the previously executed instruction.

\subsection*{5.6.5 MC_PositionProfile (Position Profile Move)}

This is a function block (FB) that causes the axis to operate according to the profile data that consists of a combination of position and time.
- Icon
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{MC_PositionProfile} \\
\hline Axis AXIS_REF_SM3 & BOOL Done \\
\hline -TimePosition MC_TP_REF & BOOL Busy \\
\hline - Execute BOOL & BOOL CommandAborted \\
\hline - ArraySize INT & BOOL Error \\
\hline -PositionScale LREAL & SMC_ERROR Errorid \\
\hline Offset \(\angle R E A L\) & \\
\hline
\end{tabular}
- Parameter
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow[t]{2}{*}{Input / output} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline & TimePosition & MC_TP_REF & - & Specifies the time/position profile. \\
\hline \multirow[t]{4}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & ArraySize & INT & 0 & \begin{tabular}{l}
A member of the Input / output TimePosition. \\
Specifies the number of points to be executed by FB in the array of time and position that are specified by MC_TP_ARRAY.
\end{tabular} \\
\hline & PositionScale & LREAL & 1 & Position scaling \\
\hline & Offset & LREAL & 0 & Position offset \\
\hline \multirow[t]{5}{*}{Output} & Done & BOOL & FALSE & TRUE: The movements specified by the profile are completed. \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}
- MC_TP_REF (Structure)
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline Number_of_pairs & INT & Not used \\
\hline isAbsolute & BOOL & \begin{tabular}{l}
Methods of specifying the position of profile data \\
TRUE: Specified in an absolute value. \\
FALSE: Specified in a relative value.
\end{tabular} \\
\hline MC_TP_Array & \begin{tabular}{l}
ARRAY [1..100] OF \\
SMC_TP
\end{tabular} & \begin{tabular}{l}
Time and position profile data \\
(1st point to 100th point)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.6 Position Control}

\section*{- SMC_TP (Structure)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline delta_time & TIME & Time of the profile data \\
\hline position & LREAL & Position of the profile data \\
\hline
\end{tabular}

\section*{- Operations when the function block is executed}

This example shows time and position traces when the MC_PositionProfile function block is executed with the following parameter settings.

\section*{Parameter}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Index of the MC_TP_Array array, a \\
member of the input TimePosition
\end{tabular} & Delta_time (time) & Position (absolute position) \\
\hline 1 & Time\#10s & 100 \\
\hline 2 & Time\#10s & 150 \\
\hline 3 & Time\#5s & 50 \\
\hline 4 & Time\#25s & 0 \\
\hline 5 to 100 & Time\#0ms & 0 \\
\hline
\end{tabular}

\section*{Trace}

\section*{\(\square\) Note}
- While the axis keeps driving, do not specify delta_time to 0 ms .

Otherwise, it may cause an abnormal operation.

\subsection*{5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure}

To enter the value of the input TimePosition, it is necessary to make default setting for variables of the MC_TP_REF type structure.

\section*{12 Procedure}
1. When the input variable to TimePosition is declared, "Automatic Declaration" dialog box is displayed. Click \(\cdots\) displayed next to the "Initial Value" field.

2. The "Initial Value" dialog box is displayed and, on the dialog box, you can set the default value for every member of the variable type (MC_TP_REF).

\subsection*{5.6 Position Control}

\subsection*{5.6.7 SMC_MoveContinuousAbsolute (Absolute Value Position Velocity Move)}

This is a function block (FB) that executes absolute value positioning and, after the axis reaches the target position, causes the axis to keep moving at a specified velocity.
- Icon

\section*{- Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline Input / output & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow[t]{9}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & Position & LREAL & 0 & Specifies the target position (u). \\
\hline & Velocity & LREAL & 0 & Specifies the velocity (\(\mathrm{u} / \mathrm{s}\)) until the axis reaches the target position. \\
\hline & EndVelocity & LREAL & 0 & Specifies the velocity (u/s) after the axis reaches the target position. \\
\hline & EndVelocityDirection & MC_Direction & current & \begin{tabular}{l}
Specifies the traveling direction after the axis reaches the target. \\
Specifies either "positive", \\
"negative", or "current". \\
If "fastest" or "shortest" is specified, an error occurs.
\end{tabular} \\
\hline & Acceleration & LREAL & 0 & Specifies the acceleration (\(\mathrm{u} / \mathrm{s}^{2}\)). \\
\hline & Deceleration & LREAL & 0 & Specifies the deceleration (\(u / \mathrm{s}^{2}\)). \\
\hline & Jerk & LREAL & 0 & Specifies the jerk (u/s \({ }^{3}\)). \\
\hline & Direction & MC_Direction & shortest & \begin{tabular}{l}
Specifies the traveling direction of the axis until the axis reaches the target position. \\
Possible to specify only for the modulo type. For the finite axis, the specification is ignored.
\end{tabular} \\
\hline \multirow[t]{2}{*}{Output} & InEndVelocity & BOOL & FALSE & TRUE: The axis has reached the target position (Position). \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{4}{*}{} & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{- MC_Direction (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline positive & 1 & Travels in the positive direction. \\
\hline negative & -1 & Travels in the negative direction. \\
\hline shortest & 3 & \begin{tabular}{l}
Travels in the shortest direction from the current command \\
position to the target command position when \\
SMC_MoveContinuousAbsolute is executed.
\end{tabular} \\
\hline fastest & 2 & \begin{tabular}{l}
Travels in the fastest direction from the current command \\
position to the target command position when \\
SMC_MoveContinuousAbsolute is executed. \\
If the axis is being driven by another function block when \\
SMC_MoveContinuousAbsolute is executed, selects the \\
fastest direction within the GM1. \\
If the axis is being stopped when \\
SMC_MoveContinuousAbsolute is executed, makes the \\
same movement as for the shortest.
\end{tabular} \\
\hline current & \begin{tabular}{l}
Travels to the current direction. \\
If the axis is being driven by another function block when \\
SMC_MoveContinuousAbsolute is executed, travels in the \\
same direction. \\
If the axis is being stopped when \\
SMC_MoveContinuousAbsolute is executed, travels in the \\
direction moved by the previously executed function block.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.6.8 SMC_MoveContinuousRelative (Relative Value Position Velocity Move)}

This is a function block (FB) that executes relative value positioning and, after the axis reaches the target position, causes the axis to keep moving at a specified velocity.

\section*{- Icon}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{SMC_MoveContinuousRelative} \\
\hline - Axis AXIS_REF_SM3 & & BOOL InEndVelocity \\
\hline - Execute BOOL & & BOOL Busy \\
\hline - Distance LREAL & & BOOL CommandAborted \\
\hline -Velocity \(\angle R E A L\) & & BOOL Error \\
\hline - EndVelocity LREAL & & SMC_ERROR ErrorID \\
\hline - EndVelocityDirection & MC_Direction & \\
\hline - Acceleration LREAL & & \\
\hline - Deceleration LREAL & & \\
\hline - Jerk LREAL & & \\
\hline
\end{tabular}

\subsection*{5.6 Position Control}

\section*{Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline Input / output & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow[t]{8}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & Distance & LREAL & 0 & Specifies the relative distance (u). \\
\hline & Velocity & LREAL & 0 & Specifies the velocity (\(\mathrm{u} / \mathrm{s}\)). \\
\hline & EndVelocity & LREAL & 0 & Specifies the velocity (\(u / s\)) after the axis travels the relative distance. \\
\hline & EndVelocityDirection & MC_Direction & current & \begin{tabular}{l}
Specifies the traveling direction after the axis travels the relative distance. \\
Specifies either "positive", "negative", or "current". \\
If "fastest" or "shortest" is specified, an error occurs.
\end{tabular} \\
\hline & Acceleration & LREAL & 0 & Specifies the acceleration (\(\mathrm{u} / \mathrm{s}^{2}\)). \\
\hline & Deceleration & LREAL & 0 & Specifies the deceleration (\(u / \mathrm{s}^{2}\)). \\
\hline & Jerk & LREAL & 0 & Specifies the jerk (\(u / s^{3}\)). \\
\hline \multirow[t]{5}{*}{Output} & InEndVelocity & BOOL & FALSE & TRUE: The axis has traveled the specified relative distance and has reached the specified velocity. \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{MC_Direction (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline positive & 1 & Travels in the positive direction. \\
\hline negative & -1 & Travels in the negative direction. \\
\hline shortest & 0 & Not available. Do not specify this. \\
\hline fastest & 3 & Not available. Do not specify this. \\
\hline current & 2 & \begin{tabular}{l}
Travels to the current direction. \\
Possible to use only for the modulo axis.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.7 Velocity Control}

\subsection*{5.7.1 MC_MoveVelocity (Velocity Control)}

This is a function block (FB) that specifies the velocity of the axis. The axis keeps moving at the specified velocity and direction.
- Icon
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{MC_MoveVelocity} \\
\hline Axis AXIS REF_SM3 & BOOL InVelocity \\
\hline - Execute BOOL & BOOL Busy \\
\hline - Velocity LREAL & BOOL CommandAborted \\
\hline - Acceleration LREAL & BOOL Error \\
\hline - Deceleration LREAL & SMC_ERROR Errorid \\
\hline Jerk LREAL & \\
\hline Direction MC Direction & \\
\hline
\end{tabular}

\section*{- Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline Input / output & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow[t]{6}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & Velocity & LREAL & 0 & Specifies the velocity (u/s). \\
\hline & Acceleration & LREAL & 0 & Specifies the acceleration (\(\mathrm{u} / \mathrm{s}^{2}\)). \\
\hline & Deceleration & LREAL & 0 & Specifies the deceleration (\(u / \mathrm{s}^{2}\)). \\
\hline & Jerk & LREAL & 0 & Specifies the jerk (u/s \({ }^{3}\)). \\
\hline & Direction & MC_Direction & current & \begin{tabular}{l}
Specifies the traveling direction of the axis. \\
"positive", "negative", or "current" (An error occurs when "fastest" or "shortest" is selected)
\end{tabular} \\
\hline \multirow[t]{5}{*}{Output} & InVelocity & BOOL & FALSE & TRUE: The axis has reached the specified velocity for the first time. \\
\hline & Busy & BOOL & FALSE & TRUE: The FB is in operation. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

MC_Direction (Enumeration type)
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline positive & 1 & Travels in the positive direction. \\
\hline negative & -1 & Travels in the negative direction. \\
\hline
\end{tabular}

\subsection*{5.7 Velocity Control}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline shortest & 0 & Not available. Do not specify this. \\
\hline fastest & 3 & Not available. Do not specify this. \\
\hline current & 2 & \begin{tabular}{l}
Travels to the current direction. \\
Possible to use only for the modulo axis.
\end{tabular} \\
\hline
\end{tabular}

\section*{1 Info.}
- To stop, set Velocity to 0 and execute again.
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{5.7.2 MC_VelocityProfile (Velocity Profile Movement)}

This is a function block (FB) that causes the axis to operate according to the profile data that consists of a combination of time and velocity.

\section*{- Icon}

Parameter
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow[t]{2}{*}{Input / output} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline & TimeVelocity & MC_TV_REF & - & Specifies the time / velocity profile. \\
\hline \multirow[t]{4}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & ArraySize & INT & 0 & A member of input TimeVelocity. Specifies the number of points to be executed by FB in the array of time and velocity that are specified by MC_TV_ARRAY. \\
\hline & VelocityScale & LREAL & 1 & Velocity scaling \\
\hline & Offset & LREAL & 0 & Velocity offset (u) \\
\hline \multirow[t]{3}{*}{Output} & Done & BOOL & FALSE & TRUE: The movements specified by the profile are completed. \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{4}{*}{} & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}
- MC_TV_REF (Structure)
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline Number_of_pairs & INT & Not used \\
\hline isAbsolute & BOOL & \begin{tabular}{l}
Methods of specifying the velocity of profile data \\
TRUE: Specified in an absolute value. \\
FALSE: Specified in a relative value.
\end{tabular} \\
\hline MC_TV_Array & \begin{tabular}{l}
ARRAY [1..100] OF \\
SMC_TV
\end{tabular} & \begin{tabular}{l}
Time and velocity profile data \\
(1st point to 100th point)
\end{tabular} \\
\hline
\end{tabular}

\section*{- SMC_TV (Structure)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline delta_time & TIME & Time of the profile data \\
\hline velocity & LREAL & Velocity of profile data \\
\hline
\end{tabular}

Regarding the method for entering defaults for variables of the MC_TV_REF Type Structure, refer to "Default Setting for Variables of the MC_TP_REF Type Structure".

\section*{\(\square\) Note}
- While the axis keeps driving, do not specify delta_time to 0 ms .

Otherwise, it may cause an abnormal operation.

\section*{- REFERENCE}
5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure

\subsection*{5.7.3 MC_AccelerationProfile (Acceleration Profile Movement)}

This is a function block (FB) that causes the axis to operate according to the profile data that consists of a combination of time and acceleration.
- Icon
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{MC_AccelerationProfile} \\
\hline -Axis AXIS_REF_SM3 & BOOL Done \\
\hline -TimeAcceleration MC_TA_REF & BOOL Busy \\
\hline - Execute BOOL & BOOL CommandAborted \\
\hline - ArraySize INT & BOOL Error \\
\hline -AccelerationScale LREAL & SMC_ERROR Errorid \\
\hline Offset \(\angle R E A L\) & \\
\hline
\end{tabular}

\subsection*{5.7 Velocity Control}

Parameter
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow[t]{2}{*}{Input / output} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline & TimeAcceleration & MC_TA_REF & - & Specifies the time / acceleration profile. \\
\hline \multirow[t]{4}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & ArraySize & INT & 0 & \begin{tabular}{l}
A member of the input TimeAccleration. \\
Specifies the number of points to be executed by FB in the array of time and acceleration that are specified by MC_TA_ARRAY.
\end{tabular} \\
\hline & AccelerationScale & LREAL & 1 & Acceleration scaling \\
\hline & Offset & LREAL & 0 & Acceleration offset (u) \\
\hline \multirow[t]{5}{*}{Output} & Done & BOOL & FALSE & TRUE: The movements specified by the profile are completed. \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{- MC_TA_REF (Structure)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline Number_of_pairs & INT & Not used \\
\hline isAbsolute & BOOL & \begin{tabular}{l}
Methods of specifying the acceleration of profile data \\
TRUE: Specified in an absolute value. \\
FALSE: Specified in a relative value.
\end{tabular} \\
\hline MC_TA_Array & \begin{tabular}{l}
ARRAY [1..100] OF \\
SMC_TA
\end{tabular} & \begin{tabular}{l}
Time and acceleration profile data \\
(1st point to 100th point)
\end{tabular} \\
\hline
\end{tabular}
- SMC_TA (Structure)
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline delta_time & TIME & Time of the profile data \\
\hline Acceleration & LREAL & Acceleration of profile data \\
\hline
\end{tabular}

Regarding the method for entering defaults for variables of the MC_TA_REF Type Structure, refer to "Default Setting for Variables of the MC_TP_REF Type Structure".

\section*{- Note}
- While the axis keeps driving, do not specify delta_time to 0 ms .

Otherwise, it may cause an abnormal operation.

\footnotetext{
——REFERENCE
5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure
}

\subsection*{5.8 Torque Control}

\subsection*{5.8 Torque Control}

\subsection*{5.8.1 PMC_SetTorque (Torque Control)}

This is a function block (FB) that specifies the torque of the axis.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{3}{*}{ Input } & bEnable & BOOL & FALSE & TRUE: The FB can be executed. \\
\cline { 2 - 5 } & fTorque & LREAL & 0 & Specifies the torque (\%). \\
\hline \multirow{3}{*}{ Output } & bBusy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & bError & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & nErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{1 Info.}
- This function block can be executed only in the torque control mode (SMC_torque). Change to the torque control mode in advance using MC_SetControllerMode.
- When executing torque control using this function block, disable bit 0 (Two-degree-of-freedom control mode) of the MINAS amplifier parameter Pr6.47 (Function enhancement setting 2).
- When stopping the axis while the axis is being controlled in the torque control mode (SMC_torque), set fTorque to 0 and execute again. Or, change to the position control mode using SMC_SetControllerMode and then stop the axis using MC_Stop.
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\section*{- REFERENCE}
5.3.1 SMC_SetControllerMode (Control Mode Setting)
5.4.1 MC_Stop (Forced Stop)

\section*{6 Motion Control Function Blocks (Synchronous Control)}
This section describes motion control function blocks to perform synchronous processing.
6.1 Cam Operation 6-2
6.1.1 MC_Camln (Start Cam Operation) 6-2
6.1.2 MC_CamOut (Cancel Cam Operation) 6-5
6.1.3 MC_CamTableSelect (Select Cam Table) 6-6
6.1.4 SMC_GetTappetValue (Tappet Output) 6-8
6.2 Gear Operation 6-11
6.2.1 MC_Gearln (Start Gear Operation) 6-11
6.2.2 MC_GearInPos (Position Specified Gear Operation) 6-12
6.2.3 MC_GearOut (Cancel Gear Operation) 6-14
6.3 Phase Correction 6-16
6.3.1 MC_Phasing (Master Axis Phase Correction) 6-16

\subsection*{6.1 Cam Operation}

\subsection*{6.1 Cam Operation}

\subsection*{6.1.1 MC_CamIn (Start Cam Operation)}

This is a function block (FB) that starts cam synchronous operation. The master axis and the slave axis operate in synchronization according to the cam table.
- Icon

\section*{Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Comment \\
\hline \multirow[t]{2}{*}{Input / output} & Master & AXIS_REF_SM3 & - & Specifies the master axis. \\
\hline & Slave & AXIS_REF_SM3 & - & Specifies the slave axis. \\
\hline \multirow[t]{10}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & MasterOffset & LREAL & 0 & Master axis table offset \\
\hline & SlaveOffset & LREAL & 0 & Slave axis table offset \\
\hline & MasterScaling & LREAL & 1 & Master axis profile scaling factor \\
\hline & SlaveSacling & LREAL & 1 & Slave axis profile scaling factor \\
\hline & StartMode & MC_StartMode & absolute & Start mode \\
\hline & CamTableID & MC_CAM_ID & 0 & \begin{tabular}{l}
Cam table ID \\
Specifies the output for MC_CamTableSelect.
\end{tabular} \\
\hline & VelocityDiff & LREAL & 0 & Specifies the maximum velocity difference (\(u / s\)) when StartMode is set to ramp_in. \\
\hline & Acceleration & LREAL & 0 & Specifies the acceleration \(\left(u / s^{2}\right)\) when StartMode is set to ramp_in. \\
\hline & Deceleration & LREAL & 0 & Specifies the deceleration \(\left(u / s^{2}\right)\) when StartMode is set to ramp_in. \\
\hline
\end{tabular}

\subsection*{6.1 Cam Operation}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Comment \\
\hline \multirow[t]{2}{*}{} & Jerk & LREAL & 0 & Specifies jerk (u/s \({ }^{3}\)) when StartMode is set to ramp_in. \\
\hline & TappetHysteresis & LREAL & 0 & Specifies the hysteresis value (position) of the tappet. \\
\hline \multirow[t]{7}{*}{Output} & InSync & BOOL & FALSE & TRUE: The cam is in synchronization for the first time. \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorlD & SMC_ERROR & 0 & An error ID is output. \\
\hline & EndOfProfile & BOOL & FALSE & A pulse is output every time the cam profile period of the slave axis ends. \\
\hline & Tappets & \[
\begin{aligned}
& \text { SMC_TAPPETD } \\
& \text { ATA }
\end{aligned}
\] & & Output tappet data Used as the input for SMC_GetTappetValue. \\
\hline
\end{tabular}

\section*{- MC_StartMode (Enumeration type)}
- absolute

If the slave axis position is offset from the position on the cam table when MC_Camln is executed, the position jumps. When starting a new cycle, the cam does not consider the current slave axis position. Therefore, if the slave axis position relative to the mater axis at the start point is offset from the slave axis position relative to the mater axis at the end point, the slave axis position may jump.

- relative

If the slave axis position is offset from the position on the cam table when MC_CamIn is executed, the position jumps. In consideration of the current slave axis position, new cam operation is started. The slave axis position at the time when the previous cycle is completed is reflected as SlaveOffset on the cam operation. It must be noted, however, that the position may jump if the master axis position is not 0 at the start position.

\subsection*{6.1 Cam Operation}

- ramp_in, ramp_in_neg, ramp_in_pos

When MC_CamIn is executed, acceleration and deceleration is performed according to VelocityDiff, Acceleration, and Deceleration to reach the synchronized state (InSync). If the slave axis is a modulo axis, correction is made only in the positive direction when the mode is set to ramp_in_pos, while correction is made only in the negative direction when the mode is set to ramp_in_neg. With the finite axis, ramp_in_pos and ramp_in_neg are treated as ramp_in.

The final StartMode is determined by MC_CamIn.StartMode and MC_CamTableSelect.SlaveAbsolute.
\begin{tabular}{|l|l|l|}
\hline MC_CamIn.StartMode & \begin{tabular}{l}
MC_CamTableSelect.SlaveAbsol \\
ute
\end{tabular} & StartMode \\
\hline absolute & TRUE & absolute \\
\hline absolute & FALSE & relative \\
\hline relative & TRUE & relative \\
\hline relative & FALSE & relative \\
\hline ramp_in & TRUE & ramp_in absolute \\
\hline ramp_in & FALSE & ramp_in relative \\
\hline ramp_in_pos & TRUE & ramp_in_pos absolute \\
\hline ramp_in_pos & FALSE & ramp_in_pos relative \\
\hline ramp_in_neg & TRUE & ramp_in_neg absolute \\
\hline ramp_in_neg & FALSE & ramp_in_neg relative \\
\hline
\end{tabular}

\section*{- Changing the scale and offset in the cam table (MasterOffset, SlaveOffset, MasterScaling, SlaveSacling)}

A cam table can be created by using the Cam Table Editor on the GM Programmer. The cam table created by using the Cam Table Editor determines the relationship between the master axis position and the slave axis position that operate on the POU,
SlavePosition = CAM(MasterPosition)

\subsection*{6.1 Cam Operation}

The scale and offset in the cam table can be changed on the POU by setting the MC_Camln parameters including MasterOffset, SlaveOffset, sterScaling, and SlaveSacling. At that time, the slave axis position is determined as follows according to the setting of each parameter.
SlavePosition = SlaveSacling * CAM(MasterPosition * MasterScaling + MasterOffset) + SlaveOffset

\section*{- Tappet}

For information on setting the tappet and TappetHysteresis of MC_CamIn, refer to the description on SMC_GetTappetValue

\section*{- SMC_TAPPETDATA (Structure)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline pTaps & \begin{tabular}{l}
ARRAY [0..2] OF \\
POINTER TO \\
SMC_CAMTappet
\end{tabular} & \begin{tabular}{l}
Used internally for the output of MC_CamIn and for the \\
input of SMC_GetTappetValue.
\end{tabular} \\
\cline { 1 - 2 } dwCycleTime & DWORD & \\
\cline { 1 - 2 } byChannels & BYTE & \\
\hline bRestart & BOOL & \\
\hline
\end{tabular}

\subsection*{6.1.2 MC_CamOut (Cancel Cam Operation)}

This is a function block (FB) that cancels synchronous operation of the cam. Synchronized operation between the master axis and slave axis is canceled.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Slave & AXIS_REF_SM3 & - & \begin{tabular}{l}
Specifies the slave axis to be \\
released.
\end{tabular} \\
\hline Input & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline \multirow{4}{*}{ Output } & Done & BOOL & FALSE & \begin{tabular}{l}
TRUE: Synchronization cancellation \\
is completed.
\end{tabular} \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\subsection*{6.1 Cam Operation}

\section*{土 Info.}
- The slave axis operation continues even after the cam operation is canceled. Execute MC_Halt or MC_Stop to stop the slave axis.
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{6.1.3 MC_CamTableSelect (Select Cam Table)}

This is a function block (FB) that specifies the cam table to be used for synchronous operation of the cam. When the cam table to be used for synchronized operation between the master axis and slave axis is selected, a cam table ID is output.

\section*{■ Icon}

\section*{- Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow[t]{3}{*}{Input / output} & Master & AXIS_REF_SM3 & - & Specifies the master axis. \\
\hline & Slave & AXIS_REF_SM3 & - & Specifies the slave axis. \\
\hline & CamTable & MC_CAM_REF & - & Specifies the cam table. \\
\hline \multirow[t]{4}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & Periodic & BOOL & TRUE & \begin{tabular}{l}
Movement of the slave axis \\
TRUE: Repeat execution \\
FALSE: 1-period execution
\end{tabular} \\
\hline & MasterAbsolute & BOOL & TRUE & \begin{tabular}{l}
TRUE: Absolute position of the master axis \\
FALSE: Relative position of the master axis
\end{tabular} \\
\hline & SlaveAbsolute & BOOL & TRUE & \begin{tabular}{l}
TRUE: Absolute position of the slave axis \\
FALSE: Relative position of the slave axis
\end{tabular} \\
\hline \multirow[t]{4}{*}{Output} & Done & BOOL & FALSE & TRUE: Selection is completed. \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\subsection*{6.1 Cam Operation}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline & CamTableID & MC_CAM_ID & & \begin{tabular}{l}
Cam table ID \\
Used as the input for MC_CamIn.
\end{tabular} \\
\hline
\end{tabular}

\section*{■ Periodic (Periodic cam control)}

If Periodic of MC_CamTableSelect is set to TRUE, cam operation is repeatedly performed. The cam is automatically restarted when reaching the end position. If Periodic is set to FALSE, when the master axis reaches the end position, EndOfProfile of MC_Camln changes to TRUE and the slave axis stops at the current position. When the master axis enters the cam position range again, the slave axis starts moving according to the cam table.

If periodic \(=\) TRUE

If periodic \(=\) FALSE

\section*{- MasterAbsolute}

If MasterAbsolute is set to TRUE, the cam starts from the current master axis position. Any position within the cam table range specified for the master axis can be set as the starting position. If the starting position is outside the cam table range, an error occurs.

If MasterAbsolute is set to FALSE, the cam is relocated to the current master axis position. The zero point of the master axis in the cam table is relocated to the current master axis position. This mode is allowed only when the value 0 is within the master axis range.

\subsection*{6.1 Cam Operation}

\section*{- SlaveAbsolute}

Refer to MC_CamIn.

\section*{1 Info.}
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{6.1.4 SMC_GetTappetValue (Tappet Output)}

This is a function block (FB) that outputs the tappet data set using the cam table. Specify the output Tappets of the MC_CamIn function block as the input for this FB and obtain the tappet output for one track.
- Icon
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{SMC_GetTappetValue} \\
\hline Tappets SMC_Tappe & Data & BOOL & bTappet \\
\hline \multicolumn{4}{|l|}{iID INT} \\
\hline \multicolumn{4}{|l|}{- bInitValue BOOL} \\
\hline bSetInitValueAtReset & BOOL & & \\
\hline
\end{tabular}
- Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Input \(/\) \\
output
\end{tabular}} & Tappets & \begin{tabular}{l}
SMC_TAPPETD \\
ATA
\end{tabular} & - & \begin{tabular}{l}
Specifies the output Tappets of \\
MC_CamIn.
\end{tabular} \\
\hline \multirow{3}{*}{ Input } & iID & INT & 0 & Track ID of the tappet \\
\cline { 2 - 5 } & bInitValue & BOOL & FALSE & Default of the tappet \\
\cline { 2 - 5 } & bSetlnitValueAtReset & BOOL & FALSE & \begin{tabular}{l}
TRUE: The tappet output is \\
Initialized when MC_Camln is \\
executed. \\
FALSE: The tappet output is held \\
when MC_CamIn is executed.
\end{tabular} \\
\hline Output & bTappet & BOOL & FALSE & Tappet output \\
\hline
\end{tabular}

\section*{■ SMC_TAPPETDATA (Structure)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline pTaps & \begin{tabular}{l}
ARRAY [0..2] OF \\
POINTER TO \\
SMC_CAMTappet
\end{tabular} & \begin{tabular}{l}
Used internally for the output of MC_CamIn and for the \\
input of SMC_GetTappetValue.
\end{tabular} \\
\cline { 1 - 2 } dwCycleTime & DWORD & \\
\hline byChannels & BYTE & \\
\hline bRestart & BOOL & \\
\hline
\end{tabular}

\section*{- Tappet settings}

Set tappet settings on the "Tappet" tab or "Tappet Table" tab window.
The settings that are set on these two tab windows are linked to each other. They can be set from either window.
Set switches required for the tracks (100 max).
The following is an example where three switches are set for two tracks.
"Tappet"

"Tappet Table"

\section*{- Operations when the function block is executed}

The operations that take place when, after setting the tappet, the SMC_GetTappetValue function block is executed and the tappet (bTappet) is output. The axis is set to the modulo (modulo value: 360).

\section*{Trace}
(1) to (3) are switch numbers.

\subsection*{6.1 Cam Operation}

\section*{- TappetHysteresis of MC_CamIn}

By setting TappetHysteresis, mechanical chattering can be filtered. When the cam reaches the tappet position, tappet processing is performed. Once the cam moves out of the tappet position range set in TappetHysteresis, tappet processing is not performed unless the cam reaches the tappet position again.

\subsection*{6.2 Gear Operation}

\subsection*{6.2.1 MC_GearIn (Start Gear Operation)}

This is a function block (FB) that starts synchronous operation of the gears. Specify the gear ratio between the master axis and slave axis and start moving the gears for synchronous operation of the gears.

\section*{■ Icon}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{MC_GearIn} \\
\hline Master AXIS_REF_SM3 & BOOL InGear \\
\hline -Slave AXIS_REF_SM3 & BOOL Busy \\
\hline - Execute BOOL & BOOL CommandAborted \\
\hline -RatioNumerator DINT & BOOL Error \\
\hline -RatioDenominator UDINT & SMC_ERROR Errorid \\
\hline - Acceleration LREAL & \\
\hline -Deceleration LREAL & \\
\hline Jerk LREAL & \\
\hline
\end{tabular}

\section*{- Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow[t]{2}{*}{Input / output} & Master & AXIS_REF_SM3 & - & Specifies the master axis. \\
\hline & Slave & AXIS_REF_SM3 & - & Specifies the slave axis. \\
\hline \multirow[t]{6}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & RatioNumerator & DINT & 1 & Specifies the gear ratio (numerator). \\
\hline & RatioDenominator & UDINT & 1 & Specifies the gear ratio (denominator). \\
\hline & Acceleration & LREAL & 0 & Maximum acceleration (\(u / \mathrm{s}^{2}\)) until gear synchronization is completed \\
\hline & Deceleration & LREAL & 0 & Maximum deceleration (u/s \({ }^{2}\)) until gear synchronization is completed \\
\hline & Jerk & LREAL & 0 & Maximum jerk (\(\mathrm{u} / \mathrm{s}^{3}\)) until gear synchronization is completed \\
\hline \multirow[t]{5}{*}{Output} & InGear & BOOL & FALSE & TRUE: Gear synchronization is completed. \\
\hline & Busy & BOOL & FALSE & TRUE: The FB is in operation. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{(Info.}
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{6.2.2 MC_GearInPos (Position Specified Gear Operation)}

This is a function block (FB) that starts synchronous operation of the gears from the specified absolute position.
- Icon

- Parameter
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow[t]{2}{*}{Input / output} & Master & AXIS_REF_SM3 & - & Specifies the master axis. \\
\hline & Slave & AXIS_REF_SM3 & - & Specifies the slave axis. \\
\hline \multirow[t]{7}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & RatioNumerator & DINT & 1 & Specifies the gear ratio (numerator). \\
\hline & RatioDenominator & DINT & 1 & Specifies the gear ratio (denominator). \\
\hline & MasterSyncPosition & LREAL & 0 & Master axis position to start synchronization \\
\hline & SlaveSyncPosition & LREAL & 0 & Slave axis position to start synchronization \\
\hline & MasterStartDistance & LREAL & 0 & \begin{tabular}{l}
When the master axis moves forward from the MasterSyncPosition position for the distance specified by MasterStartDistance, the slave axis starts moving for the synchronized operation with the master axis. \\
If MasterStartDistance is zero, the slave axis immediately starts moving for synchronization.
\end{tabular} \\
\hline & AvoidReversal & BOOL & FALSE & FALSE: Reverse rotation of the slave axis is possible. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{5}{*}{ Output } & StartSync & BOOL & FALSE & \begin{tabular}{l}
TRUE: Reverse rotation of the \\
slave axis is impossible.
\end{tabular} \\
\cline { 2 - 6 } & InSync & BOOL & \begin{tabular}{l}
TRUE: Gear synchronization is \\
started.
\end{tabular} \\
\cline { 2 - 6 } & Busy & FALSE & \begin{tabular}{l}
TRUE: Gear synchronization is \\
completed.
\end{tabular} \\
\cline { 2 - 6 } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{- Operations when the function block is executed}

This example shows the trace when the MC_GearlnPos function block is executed with the following conditions.

\section*{Execution condition}
\begin{tabular}{|l|l|}
\hline Item & Dis \\
\hline Master axis type & Modulo (modulo value = 1000) \\
\hline Slave axis type & Modulo (modulo value = 1000) \\
\hline Gear ratio & \(1: 1\) \\
\hline Input MasterSyncPostion & 900 \\
\hline Input SlaveSyncPositon & 900 \\
\hline Input MasterStartDistance & 500 \\
\hline
\end{tabular}

When the master axis position reaches 900 and the salve axis position reaches 900 , the master axis starts to synchronize with the slave axis. When the master axis passes the position 400, which is obtained by deducting 500 (MasterStartDistane) from 900 (synchronization start position of the master axis), the slave axis starts traveling to synchronize with the master axis. At this time, velocity, acceleration, and deceleration are automatically determined.

\section*{Position of the master axis}

\section*{Position of the slave axis}

\section*{- AvoidReversal}

By setting AvoidReversal, the slave axis can be restricted on reverse rotation. If AvoidReversal is set to TRUE, an error occurs under the following conditions.
1. Gear ratio is negative.

If the gear ratio is negative (for example, RatioNumerator \(=-1\), RatioDenominator \(=1\)), when the axis reaches the position set in GearInPos.StartSync while the slave axis is operating in forward rotation, an error (SMC_GIP_SLAVE_REVERSAL_CANNOT_BE_AVOIDED) occurs
2. The slave axis is rotating in reverse to the rotation of the master axis before the start of synchronization
When the axis reaches the gear synchronization start position set in StartSync while the slave axis is operating in reverse rotation, an error
(SMC_GIP_SLAVE_REVERSAL_CANNOT_BE_AVOIDED) occurs
3. Correction of the slave axis is not completed within five cycles.

Gear synchronization completion (InSync) is not achieved within five cycles after reaching the gear synchronization start (StartSync), an error occurs.

\subsection*{6.2.3 MC_GearOut (Cancel Gear Operation)}

This is a function block (FB) that cancels synchronous operation of the gears. Synchronized gear operation between the master axis and slave axis is canceled.
- Icon
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{MC_GearOut} \\
\hline Slave AXIS_REF_SM3 & BOOL Done \\
\hline Execute BOOL & BOOL Busy \\
\hline & BOOL Error \\
\hline & SMC_ERROR Errorid \\
\hline
\end{tabular}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Slave & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline \multirow{4}{*}{ Output } & Done & BOOL & FALSE & \begin{tabular}{l}
TRUE: Synchronization cancellation \\
is completed.
\end{tabular} \\
\cline { 2 - 6 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{1 Info.}
- The slave axis operation continues even after the gear operation is canceled. Execute MC_Halt or MC_Stop to stop the slave axis.
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{6.3 Phase Correction}

\subsection*{6.3 Phase Correction}

\subsection*{6.3.1 MC_Phasing (Master Axis Phase Correction)}

This is a function block (FB) that performs phase correction between the master axis and slave axis. Phase synchronous operation can be performed by making phase correction for the master axis.
- Icon

- Parameter
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow[t]{2}{*}{Input / output} & Master & AXIS_REF_SM3 & - & Specifies the master axis. \\
\hline & Slave & AXIS_REF_SM3 & - & Specifies the slave axis. \\
\hline \multirow[t]{6}{*}{Input} & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & PhaseShift & LREAL & 0 & Specifies the phase between the master axis and slave axis. \\
\hline & Velocity & LREAL & 0 & Specifies the velocity (\(\mathrm{u} / \mathrm{s}\)). \\
\hline & Acceleration & LREAL & 0 & Specifies the acceleration (\(\mathrm{u} / \mathrm{s}^{2}\)). \\
\hline & Deceleration & LREAL & 0 & Specifies the deceleration (\(u / \mathrm{s}^{2}\)). \\
\hline & Jerk & LREAL & 0 & Specifies the jerk (\(u / s^{3}\)). \\
\hline \multirow[t]{5}{*}{Output} & Done & BOOL & FALSE & TRUE: Phase correction is completed. \\
\hline & Busy & BOOL & FALSE & TRUE: The FB is in operation. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{(1) Info.}
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\section*{7 Motion Control Function Blocks (Multi-axis Control)}

This section describes function blocks used to perform multi-axis control using the CNC program.
7.1 Interpolation Control 7-2
7.1.1 PMC_Interpolator2D (Two-dimensional Interpolation Control) 7-2
7.1.2 PMC_Interpolator3D (Three-dimensional Interpolation Control) 7-3
7.1.3 PMC_NCDecoder (CNC Table Conversion) 7-5

\subsection*{7.1 Interpolation Control}

\subsection*{7.1.1 PMC_Interpolator2D (Two-dimensional Interpolation Control)}

This function block (FB) performs 2-axis interpolation control according to the specified CNC table.
- Icon

- Parameter
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Default value & Description \\
\hline \multirow[t]{2}{*}{I/O} & Axisx & AXIS_REF_SM3 & - & Specifies the x-axis. \\
\hline & Axisy & AXIS_REF_SM3 & - & Specifies the y-axis. \\
\hline \multirow[t]{8}{*}{Input} & bExecute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & poqDataln & POINTER TO SMC_OUTQUE UE & - & Specifies a pointer to the CNC table. \\
\hline & bSlowStop & BOOL & FALSE & \begin{tabular}{l}
TRUE: A pause is executed. \\
Deceleration stop is executed according to the velocity profile (iVelMode). \\
FALSE: The pause is canceled.
\end{tabular} \\
\hline & bEmergencyStop & BOOL & FALSE & \begin{tabular}{l}
TRUE: An emergency stop is executed. \\
FALSE: The emergency stop is canceled.
\end{tabular} \\
\hline & bAbort & BOOL & FALSE & TRUE: Execution of the FB is stopped. \\
\hline & dwlpoTime & DWORD & 0 & MotionTask interval (\(\mu \mathrm{sec}\)) \\
\hline & iVelMode & \[
\begin{aligned}
& \text { SMC_INT_VEL } \\
& \text { MODE }
\end{aligned}
\] & TRAPEZOID & Specifies a velocity profile. \\
\hline & dJerkMax & LREAL & LREAL & Specifies the maximum value of jerk. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Default value & Description \\
\hline \multirow[t]{3}{*}{} & & & & This parameter must be specified when QUADRATIC is selected for the velocity profile (iVelMode). \\
\hline & bWaitAtNextStop & BOOL & BOOL & \begin{tabular}{l}
TRUE: A pause is executed in the table where the velocity between paths becomes zero. \\
The conditions that cause the velocity between paths to become zero are set in bSingleStep or dAngleMode. \\
FALSE: The pause is canceled.
\end{tabular} \\
\hline & bSingleStep & BOOL & BOOL & TRUE: All connections between paths are established through deceleration stop. \\
\hline \multirow[t]{7}{*}{Output} & bCommandAborted & BOOL & FALSE & TRUE: An interruption is caused by another FB. \\
\hline & bBusy & BOOL & - & TRUE: Execution of the FB is not completed. \\
\hline & bDone & BOOL & FALSE & TRUE: Output is completed. \\
\hline & bError & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorIDdx & SMC_ERROR & \[
\begin{aligned}
& \text { SMC_NO_ERR } \\
& \text { OR }
\end{aligned}
\] & Error ID output during x-axis movement processing \\
\hline & ErrorIDdy & SMC_ERROR & SMC_NO_ERR OR & Error ID output during y-axis movement processing \\
\hline & ErrorID & SMC_ERROR & \[
\begin{aligned}
& \text { SMC_NO_ERR } \\
& \text { OR }
\end{aligned}
\] & Error ID output during interpolation control operation \\
\hline
\end{tabular}

SMC_INT_VELMODE (Enumeration type)
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline TRAPEZOID & 0 & Trapezoid \\
\hline SIGMOID & 1 & Sin2 \\
\hline SIGMOID_LIMIT & 2 & Sin2 (limit) \\
\hline QUADRATIC & 3 & Quadratic \\
\hline QUADRATIC_SMOOTH & 4 & Quadratic (smooth) \\
\hline
\end{tabular}

\subsection*{7.1.2 PMC_Interpolator3D (Three-dimensional Interpolation Control)}

This function block (FB) performs 3-axis interpolation control according to the specified CNC table.

\subsection*{7.1 Interpolation Control}

\section*{Icon}

\section*{Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Default value & Description \\
\hline \multirow[t]{3}{*}{I/O} & Axisx & AXIS_REF_SM3 & - & Specifies the x-axis. \\
\hline & Axisy & AXIS_REF_SM3 & - & Specifies the y-axis. \\
\hline & Axisz & AXIS_REF_SM3 & - & Specifies the z-axis. \\
\hline \multirow[t]{9}{*}{Input} & bExecute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & poqDataln & POINTER TO SMC_OUTQUE UE & - & Specifies a pointer to the CNC table. \\
\hline & bSlowStop & BOOL & FALSE & \begin{tabular}{l}
TRUE: A pause is executed. Deceleration stop is executed according to the velocity profile (iVelMode). \\
FALSE: The pause is canceled.
\end{tabular} \\
\hline & bEmergencyStop & BOOL & FALSE & \begin{tabular}{l}
TRUE: An emergency stop is executed. \\
FALSE: The emergency stop is canceled.
\end{tabular} \\
\hline & bAbort & BOOL & FALSE & TRUE: Execution of the FB is stopped. \\
\hline & dwlpoTime & DWORD & 0 & MotionTask interval (\(\mu \mathrm{sec}\)) \\
\hline & iVelMode & \[
\begin{aligned}
& \text { SMC_INT_VEL } \\
& \text { MODE }
\end{aligned}
\] & TRAPEZOID & Specifies a velocity profile. \\
\hline & dJerkMax & LREAL & LREAL & \begin{tabular}{l}
Specifies the maximum value of jerk. \\
This parameter must be specified when QUADRATIC is selected for the velocity profile (iVelMode).
\end{tabular} \\
\hline & bWaitAtNextStop & BOOL & BOOL & \begin{tabular}{l}
TRUE: A pause is executed in the table where the velocity between paths becomes zero. \\
The conditions that cause the velocity between paths to become
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Default value & Description \\
\hline \multirow[t]{2}{*}{} & & & & \begin{tabular}{l}
zero are set in bSingleStep or dAngleMode. \\
FALSE: The pause is canceled.
\end{tabular} \\
\hline & bSingleStep & BOOL & BOOL & TRUE: All connections between paths are established through deceleration stop. \\
\hline \multirow[t]{8}{*}{Output} & bCommandAborted & BOOL & FALSE & TRUE: An interruption is caused by another FB. \\
\hline & bBusy & BOOL & - & TRUE: Execution of the FB is not completed. \\
\hline & bDone & BOOL & FALSE & TRUE: Output is completed. \\
\hline & bError & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorIDdx & X-axis error ID & SMC_NO_ERR OR & Error ID output during x-axis movement processing \\
\hline & ErrorIDdy & Y-axis error ID & \[
\begin{aligned}
& \text { SMC_NO_ERR } \\
& \text { OR }
\end{aligned}
\] & Error ID output during y-axis movement processing \\
\hline & ErrorIDdz & Z-axis error ID & \[
\begin{aligned}
& \text { SMC_NO_ERR } \\
& \text { OR }
\end{aligned}
\] & Error ID output during z-axis movement processing \\
\hline & ErrorID & SMC_ERROR & \[
\begin{aligned}
& \text { SMC_NO_ERR } \\
& \text { OR }
\end{aligned}
\] & Error ID output during interpolation control operation \\
\hline
\end{tabular}

\section*{SMC_INT_VELMODE (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline TRAPEZOID & 0 & Trapezoid \\
\hline SIGMOID & 1 & Sin2 \\
\hline SIGMOID_LIMIT & 2 & Sin2 (limit) \\
\hline QUADRATIC & 3 & Quadratic \\
\hline QUADRATIC_SMOOTH & 4 & Quadratic (smooth) \\
\hline
\end{tabular}

\subsection*{7.1.3 PMC_NCDecoder (CNC Table Conversion)}

This function block (FB) decodes the specified SMC_CNC_REF value to SMC_OUTQUEUE.

\section*{■ Icon}

\subsection*{7.1 Interpolation Control}

Parameter
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Default value & Description \\
\hline I/O & ncprogln & SMC_CNC_REF & - & Specifies the SMC_CNC_REF value to be decoded. \\
\hline \multirow[t]{8}{*}{Input} & bExecute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline & nSizeOutQueue & UDINT & - & \begin{tabular}{l}
Specifies a buffer size. \\
We recommend that a buffer be created and the sizeof operator be specified as shown in the following example. \\
ExampleBuf: ARRAY [0..50] OF SMC_GEOINFO; \\
nSizeOutQueue:=sizeof(ExampleB uf)
\end{tabular} \\
\hline & pbyBufferOutQueue & POINTER TO ARRAY [0..0] OF SMC_GEOINFO & - & \begin{tabular}{l}
Specifies the memory space for SMC_OUTUEUE. \\
We recommend that array SMC_GEOINFO be defined and an address be specified as shown in the following example. \\
ExampleBuf: ARRAY [0..50] OF SMC_GEOINFO; \\
(Buffer that can store 50 path elements) \\
pbyBufferOutQueue:=ADR(Exampl eBuf)
\end{tabular} \\
\hline & dXstartPosition & LREAL & 0 & Specifies the position of the x-axis at the start of movement \({ }^{(\text {Note } 1)}\). \\
\hline & dYstartPosition & LREAL & 0 & Specifies the position of the \(y\)-axis at the start of movement \({ }^{(\text {Note } 1)}\). \\
\hline & dZstartPosition & LREAL & 0 & Specifies the position of the z-axis at the start of movement \({ }^{(\text {Note } 1)}\). \\
\hline & bAppend & BOOL & FALSE & TRUE: Decoded data of ncprogIn is appended to the end of poqDataOut without resetting the poqDataOut data within the FB at the rising edge as specified by bExecute. \\
\hline & bAbort & BOOL & FALSE & TRUE: Execution of the FB is stopped. \\
\hline \multirow[t]{5}{*}{Output} & poqDataOut & POINTER TO SMC_OUTQUE UE & - & Pointer to SMC_OUTQUEUE which manages decoded SMC_GEOINFO objects \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & Done & BOOL & FALSE & TRUE: Output is completed. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & Error ID output \\
\hline
\end{tabular}
(Note 1) We recommend that fSetPosition be entered. If the entered value and the actual position differ, there is a risk that the axis may move suddenly.

\section*{8 Motion Control Function Blocks (Motion Communication Control)}

This section describes function blocks used to perform communication control.
8.1 RTEX 8-2
8.1.1 Types of Data To Be Handled by AMP Function Blocks 8-2
8.1.2 RTEX_ClearAmpAlarm (Clear Amplifier Alarm) 8-2
8.1.3 RTEX_ReadAmpAlarm (Read Amplifier Alarm) 8-4
8.1.4 RTEX_ReadAmpState (Amplifier Alarm Status) 8-5
8.1.5 RTEX_ReadAmpData (Amplifier Monitor) 8-6
8.1.6 RTEX_ReadAmpParameter (Read Amplifier Parameter) 8-7
8.1.7 RTEX_WriteAmpParameter (Write Amplifier Parameter) 8-8
8.1.8 RTEX_ClearAmpMultiTurnData (Clear Amplifier Multi-turn Data) 8-9
8.1.9 RTEX_ClearAmpPositionalDeviation (Clear Amplifier Deviation Counter) 8-10
8.1.10 RTEX_ReadNot (Read NOT of Amplifier) 8-11
8.1.11 RTEX_ReadPot (Read POT of Amplifier) 8-11
8.1.12 RTEX_GetTrackingCommandError 8-12

\subsection*{8.1 RTEX}

\subsection*{8.1.1 Types of Data To Be Handled by AMP Function Blocks}
\begin{tabular}{|l|l|l|}
\hline Item & Description & Related function blocks \\
\hline AMP alarm & \begin{tabular}{l}
This is an AMP alarm that occurs in AMP \\
operation.
\end{tabular} & \begin{tabular}{l}
RTEX_ClearAmpAlarm \\
RTEX_ReadAmpAlarm \\
RTEX_ReadAmpState
\end{tabular} \\
\hline AMP warning & \begin{tabular}{l}
This is an AMP warning that occurs in AMP \\
operation. \\
This occurs before the AMP alarm. If the \\
situation worsens, an AMP alarm occurs.
\end{tabular} & RTa \\
\hline Monitor data & \begin{tabular}{l}
This is monitor data (position deviation, load \\
percentage, etc.) of the RTEX communication \\
data.
\end{tabular} & RTEX_ReadAmpData \\
\hline AMP parameter & \begin{tabular}{l}
This is configuration data of the AMP device \\
itself.
\end{tabular} & \begin{tabular}{l}
RTEX_ReadAmpParameter \\
RTEX_WriteAmpParameter
\end{tabular} \\
\hline Multi-turn data & \begin{tabular}{l}
There are two types of data in the data read \\
by the absolute encoder (23 bit/r): one type is \\
single-turn data that indicates the position \\
within one motor rotation and the other is \\
multi-turn data that counts one for one turn.
\end{tabular} & RTEX_ClearAmpMultiTurnData \\
\hline Deviation counter & \begin{tabular}{l}
This is a processing part in the AMP that \\
receives move commands to the AMP. \\
The motor moves according to the commands \\
accumulated in the deviation counter. \\
The commands used for the motor movement \\
are deleted from the deviation counter. \\
The amount of commands accumulated in the \\
deviation counter is called the position \\
deviation.
\end{tabular} & RTEX_ClearAmpPositionalDeviation \\
\hline Limit switch & \begin{tabular}{l}
This data is collected to monitor the POT and \\
NOT states of the AMP.
\end{tabular} & RTEX_ReadNot, RTEX_ReadPot \\
\hline
\end{tabular}

\subsection*{8.1.2 RTEX_ClearAmpAlarm (Clear Amplifier Alarm)}

This is a function block (FB) that clears the AMP alarm. It deletes the alarm or warning that has occurred in the AMP.
- Icon

- Parameter
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline Input / Output & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Execute & BOOL & FALSE & \begin{tabular}{l}
TRUE: Starts execution at the rising edge. \\
FALSE: Stops processing.
\end{tabular} \\
\hline \multirow[t]{7}{*}{Output} & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & Done & BOOL & FALSE & TRUE: Clearing is completed. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline & Alarm & ALARM_CODE & - & A deleted alarm code is output. \\
\hline & Warning & WARNING_COD E & - & A deleted warning code is output. \\
\hline
\end{tabular}

\section*{- ALARM_CODE (Union)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline uiAlarmCode & UINT & Alarm code \\
\hline tAlarmCodeMember & \begin{tabular}{l}
ALARM_WARNING_C \\
ODES
\end{tabular} & Main alarm code and sub alarm code \\
\hline
\end{tabular}

\section*{■ WARNING_CODE (Union)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline uiWarningCode & UINT & Warning code \\
\hline tWarningCodeMember & \begin{tabular}{l}
ALARM_WARNING_C \\
ODES
\end{tabular} & \begin{tabular}{l}
Main warning code (warning number) and sub warning \\
code (0)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{8.1 RTEX}
- ALARM_WARNING_CODES (Structure)
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline byMainCode & BYTE & Main code \\
\hline bySubCode & BYTE & Sub code \\
\hline
\end{tabular}

\section*{REFERENCE}
11.2.1 RTEX Error ID
11.2.2 Alarm Codes
11.2.3 Warning Codes

\subsection*{8.1.3 RTEX_ReadAmpAlarm (Read Amplifier Alarm)}

This is a function block (FB) that reads the AMP alarm. It reads the information of the alarm or warning that has occurred in the AMP.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Execute & BOOL & FALSE & \begin{tabular}{l}
TRUE: Starts execution at the rising \\
edge. \\
FALSE: Stops processing.
\end{tabular} \\
\cline { 2 - 6 } & AlarmIndex & UINT & - & \begin{tabular}{l}
Specifies the history number (0 to \\
\(14)\). \\
0 is given for the latest history.
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 6 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Done & BOOL & FALSE & TRUE: Reading is completed. \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{8.1 RTEX}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{4}{*}{} & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\cline { 2 - 5 } & Alarm & ALARM_CODE & - & A read alarm code is output. \\
\cline { 2 - 5 } & Warning & \begin{tabular}{l}
WARNING_COD \\
E
\end{tabular} & - & A read warning code is output. \\
\hline
\end{tabular}
- ALARM_CODE (Union)
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline uiAlarmCode & UINT & Alarm code \\
\hline tAlarmCodeMember & \begin{tabular}{l}
ALARM_WARNING_C \\
ODES
\end{tabular} & Main alarm code and sub alarm code \\
\hline
\end{tabular}

\section*{■ WARNING_CODE (Union)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline uiWarningCode & UINT & Warning code \\
\hline tWarningCodeMember & \begin{tabular}{l}
ALARM_WARNING_C \\
ODES
\end{tabular} & Main warning code and sub warning code \\
\hline
\end{tabular}
- ALARM_WARNING_CODES (Structure)
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline byMainCode & BYTE & Main alarm number code \\
\hline bySubCode & BYTE & Sub alarm number code \\
\hline
\end{tabular}

\section*{REFERENCE}
11.2.1 RTEX Error ID
11.2.2 Alarm Codes
11.2.3 Warning Codes

\subsection*{8.1.4 RTEX_ReadAmpState (Amplifier Alarm Status)}

This is a function block (FB) that reads the AMP alarm state. It outputs the information and state of the axis where the AMP alarm or warning has occurred.
- Icon
\begin{tabular}{|r|r|}
\hline RTEX_ReadAmpState \\
UDINT & RTEXCommState \\
UNDNT & NumberOfSlaves
\end{tabular} -

\subsection*{8.1 RTEX}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline Output & RTEXCommState & UDINT & - & \begin{tabular}{l}
Outputs RTEX communication \\
status \\
0: Initialization in progress \\
\(100:\) Operation in progress \\
1000 or more: Error
\end{tabular} \\
& & & & \begin{tabular}{l}
The number of axes connected (1 \\
to 16) is output.
\end{tabular} \\
\cline { 2 - 6 } & NumberOfSlaves & UDINT & - & \begin{tabular}{l}
The MAC-ID \((0\) to 15\()\) where the \\
AMP alarm has occurred is output.
\end{tabular} \\
\cline { 2 - 5 } & AlarmState & DWORD & - & \begin{tabular}{l}
The MAC-ID (0 to 15) where the \\
AMP warning has occurred is \\
output.
\end{tabular} \\
\cline { 2 - 5 } & WarningState & DWORD & - & \\
\hline
\end{tabular}

\subsection*{8.1.5 RTEX_ReadAmpData (Amplifier Monitor)}

This is a function block (FB) that reads the monitor data of the AMP. It reads various monitor data of the AMP.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{4}{*}{ Input } & Execute & BOOL & FALSE & \begin{tabular}{l}
TRUE: Starts execution at the rising \\
edge. \\
FALSE: Stops processing.
\end{tabular} \\
\cline { 2 - 6 } & MonTypeCode & UINT & & \begin{tabular}{l}
Specifies the type code for the \\
monitor command.
\end{tabular} \\
\hline \multirow{3}{*}{ Output } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 6 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Done & BOOL & FALSE & TRUE: Monitoring is completed. \\
\hline
\end{tabular}

\subsection*{8.1 RTEX}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{4}{*}{} & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\cline { 2 - 5 } & MonitorValue & UDINT & - & Read monitor command \\
\hline
\end{tabular}

\section*{REFERENCE}
11.2.1 RTEX Error ID
11.4 Monitor Commands

\subsection*{8.1.6 RTEX_ReadAmpParameter (Read Amplifier Parameter)}

This is a function block (FB) that reads the AMP parameter.

\section*{- Icon}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{5}{*}{ Input } & Execute & BOOL & FALSE & \begin{tabular}{l}
TRUE: Starts execution at the rising \\
edge. \\
FALSE: Stops processing.
\end{tabular} \\
\cline { 2 - 6 } & ParameterClass & BYTE & - & \begin{tabular}{l}
Specifies the AMP parameter \\
classification.
\end{tabular} \\
\cline { 2 - 5 } & ParameterID & BYTE & - & \begin{tabular}{l}
Specifies the AMP parameter \\
number.
\end{tabular} \\
\hline \multirow{4}{*}{\begin{tabular}{ll}
Output
\end{tabular}} & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Done & BOOL & FALSE & TRUE: Reading is completed. \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\subsection*{8.1 RTEX}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline & ReadValue & DINT & - & Read AMP parameter value \\
\hline
\end{tabular}

\section*{REFERENCE}

\subsection*{11.2.1 RTEX Error ID}
11.3 List of AMP Parameters

\subsection*{8.1.7 RTEX_WriteAmpParameter (Write Amplifier Parameter)}

This is a function block (FB) that writes the AMP parameter.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{6}{*}{\begin{tabular}{l}
Input \(/\) \\
output
\end{tabular}} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Execute & BOOL & FALSE & \begin{tabular}{l}
TRUE: Starts execution at the rising \\
edge. \\
FALSE: Stops processing.
\end{tabular} \\
\cline { 2 - 5 } & ParameterClass & BYTE & - & \begin{tabular}{l}
Specifies the AMP parameter \\
classification.
\end{tabular} \\
\cline { 2 - 6 } & ParameterID & BYTE & - & \begin{tabular}{l}
Specifies the AMP parameter \\
number.
\end{tabular} \\
\cline { 2 - 6 } & WriteValue & DINT & - & \begin{tabular}{l}
Value to be written in the AMP \\
parameter
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Done & BOOL & FALSE & TRUE: Writing is completed. \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\section*{REFERENCE}
11.2.1 RTEX Error ID
11.3 List of AMP Parameters

\subsection*{8.1.8 RTEX_ClearAmpMultiTurnData (Clear Amplifier Multi-turn Data)}

This is a function block (FB) that clears the multi-turn data of the AMP.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & \begin{tabular}{l}
AXIS_REF_RTE \\
X_Panasonic
\end{tabular} & - & Specifies the axis. \\
\hline Input & Execute & BOOL & FALSE & \begin{tabular}{l}
TRUE: Starts execution at the rising \\
edge. \\
FALSE: Stops processing.
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 6 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 6 } & Done & BOOL & FALSE & TRUE: Clearing is completed. \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

The PMC_ClearAmpMultiTurnData function block outputs the following errors.
\begin{tabular}{|l|l|}
\hline Error & Description \\
\hline SMC_WRONG_CONTROLLER_MODE & \begin{tabular}{l}
Executed in a mode other than the position control \\
mode. \\
Change to SMC_position using \\
SMC_SetControllerMode.
\end{tabular} \\
\hline SMC_DI_HOMING_ERROR & The encoder used is an Incremental encoder. \\
\hline SMC_AXIS_NOT_READY_FOR_MOTION & \begin{tabular}{l}
The axis is in a state where \\
PMC_ClearAmpMultiTurnData cannot be executed. \\
It can be executed only when set to Disabled or \\
Errorstop.
\end{tabular} \\
\hline SMC_REGULATOR_OR_START_NOT_SET & The axis is in a servo ON state. \\
\hline SMC_AXIS_REF_CHANGED_DURING_OPERATION & The Axis was changed during operation. \\
\hline
\end{tabular}

\subsection*{8.1.9 RTEX_ClearAmpPositionalDeviation (Clear Amplifier Deviation Counter)}

This is a function block (FB) that clears the deviation counter of the AMP. It deletes the position deviation data in the deviation counter of the AMP.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & \begin{tabular}{l}
AXIS_REF_RTE \\
X_Panasonic
\end{tabular} & - & Specifies the axis. \\
\hline \multirow{6}{*}{ Input } & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\cline { 2 - 5 } & Velocity(Note 1) & LREAL & & \begin{tabular}{l}
Information required to execute \\
MC_MoveAbsolute
\end{tabular} \\
\cline { 2 - 5 } & Acceleration(Note 1) & LREAL & & \begin{tabular}{l}
Information required to execute \\
MC_MoveAbsolute
\end{tabular} \\
\cline { 2 - 5 } & Deceleration(Note 1) & LREAL & & \begin{tabular}{l}
Information required to execute \\
MC_MoveAbsolute
\end{tabular} \\
\cline { 2 - 5 } & Jerk(Note 1) & LREAL & & \begin{tabular}{l}
Information required to execute \\
MC_MoveAbsolute
\end{tabular} \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Output
\end{tabular}} & CommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Done & BOOL & FALSE & TRUE: Clearing is completed. \\
\cline { 2 - 5 } & Error & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}
(Note 1) This function block internally substitutes the command position with an actual position to call MC_MoveAbsolute and, therefore, requires parameters including Velocity, Acceleration, Deceleration, and Jerk.
The RTEX_ClearAmpPositionalDeviation function block outputs the following errors.
\begin{tabular}{|l|l|}
\hline Error & Description \\
\hline \multirow{3}{*}{ SMC_WRONG_CONTROLLER_MODE } & \begin{tabular}{l}
Executed in a mode other than the position control \\
mode. \\
Change to SMC_position using \\
SMC_SetControllerMode.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Error & Description \\
\hline SMC_AXIS_NOT_READY_FOR_MOTION & \begin{tabular}{l}
The axis is in a state where \\
PMC_ClearAmpMultiTurnData cannot be executed. \\
It can be executed only at the standstill state.
\end{tabular} \\
\hline SMC_REGULATOR_OR_START_NOT_SET & The axis is in a servo ON state。 \\
\hline SMC_PP_WRONG_AXIS_TYPE & The axis is a virtual axis. \\
\hline
\end{tabular}

\subsection*{8.1.10 RTEX_ReadNot (Read NOT of Amplifier)}

This is a function that reads the NOT state of the amplifier.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Type & Parameter name & Type & Description \\
\hline I/O & Axis & \begin{tabular}{l}
AXIS_REF_RTEX_P \\
anasonic
\end{tabular} & Specifies the axis. \\
\hline Output & RTEX_ReadNot & BOOL & TRUE: NOT is ON. \\
\hline
\end{tabular}

\subsection*{8.1.11 RTEX_ReadPot (Read POT of Amplifier)}

This is a function that reads the POT state of the amplifier.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Type & Parameter name & Type & Description \\
\hline I/O & Axis & \begin{tabular}{l}
AXIS_REF_RTEX_P \\
anasonic
\end{tabular} & Specifies the axis. \\
\hline Output & RTEX_ReadPot & BOOL & TRUE: POT is ON. \\
\hline
\end{tabular}

\subsection*{8.1.12 RTEX_GetTrackingCommandError}

The RTEX periodically sends commands. With the GM1 specifications, when the MotionTask cycle time exceeds the control cycle, the command position for the servo amplifier is not updated for that cycle. (This is called a lost RTEX command.) This function block measures the number of sent RTEX commands and the number of lost RTEX commands. Using this function, you can check if the command position is updated normally for every cycle.
- Icon

\section*{Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Scope} & Definition & Value & Description \\
\hline \multirow[t]{4}{*}{Input} & Execute & --- & & \begin{tabular}{l}
Execute = TRUE: Starts measurement when triggered. \\
Execute = FALSE: Clears output.
\end{tabular} \\
\hline & ContinuousLos sCondtion & Continuous command loss condition & 0: Disabled & If the command loss continuously occurs at ContinuousLossCondtion cycle, bContinuousLossError turns TRUE. \\
\hline & MesurementC ycleCondition & Command loss statistical measurement cycle condition & 0: Disabled & \multirow[t]{2}{*}{If the command loss occurs as many times as specified in LossRateCondition during the MesurementCycleCondition period, bLossRateError turns TRUE.} \\
\hline & LossRateCond ition & Under measurement & 0 to 100\% & \\
\hline \multirow[t]{5}{*}{Output} & Busy & Under measurement & & --- \\
\hline & NumberOfSen dCommand & Total number of commands sent & & Returns a value when Execute is TRUE. Clears when Execute is FALSE. \\
\hline & NumberOfLoss Command & Total number of commands lost & & Returns a value when Execute is TRUE. Clears when Execute is FALSE. \\
\hline & bContinuousLo ssError & Occurrence of a continuous command loss error & & Occurrence of a condition error of ContinuousLossCondtion \\
\hline & \begin{tabular}{l}
bLossRateErro \\
r
\end{tabular} & Occurrence of a command loss statistics error & & Occurrence of a condition error of MesurementCycleCondition or LossRateCondition \\
\hline
\end{tabular}
(Note 1) If the number of frames exceeds 32 bits, normal value is not returned.

\section*{9 Motion Control Function Blocks (Auxiliary Function)}
9.1 Motion Auxiliary Function (Monitoring) 9-2
9.1.1 MC_ReadActualPosition (Read Current Position) 9-2
9.1.2 MC_ReadActualVelocity (Read Current Velocity) 9-2
9.1.3 PMC_ReadActualTorque (Read Current Torque) 9-3
9.1.4 MC_ReadStatus (Read Status) 9-4
9.1.5 SMC_InPosition (In-position Judgment) 9-6
9.1.6 SMC_ReadFBError (Read Oldest Error) 9-7
9.1.7 SMC_ClearFBError (Clear Oldest Error) 9-8
9.1.8 SMC_CheckAxisCommunication (Check Axis Communication Status) 9-8
9.1.9 SMC_CheckLimits (Check Exceeding Limits) 9-9
9.1.10 SMC_GetMaxSetAccDec (Measure Maximum Acceleration / Deceleration) 9-10
9.1.11 SMC_GetMaxSetVelocity (Measure Maximum Velocity) 9-11
9.1.12 SMC_GetTrackingError (Measure Tracking Error) 9-11
9.1.13 SMC_MeasureDistance (Measure Turnaround Travel Distance) 9-12
9.1.14 SMC_ReadSetPosition (Read Axis Set Position) 9-13
9.2 Motion Auxiliary Function (Change / Reset) 9-14
9.2.1 MC_Reset (Axis Error Reset) 9-14
9.2.2 MC_SetPosition (Change Current Position) 9-14
9.3 Motion Auxiliary Function (Other Functions) 9-16
9.3.1 PMC_ReadLatchPosition (Amplifier Latch Monitor) 9-16
9.3.2 PMC_StopLatchPosition (Stop Amplifier Latch) 9-18
9.3.3 MC_DigitalCamSwitch (Enable Digital Cam Switch) 9-21
9.3.4 SMC_BacklashCompensation (Compensate Backlash) 9-25

\subsection*{9.1 Motion Auxiliary Function (Monitoring)}

\subsection*{9.1.1 MC_ReadActualPosition (Read Current Position)}

This is a function block (FB) that reads the actual position data of the axis.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Enable & BOOL & FALSE & \begin{tabular}{l}
Reads the actual position while \\
Enable is set to TRUE.
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & Valid & BOOL & FALSE & TRUE: Valid output \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 6 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\cline { 2 - 5 } & Position & LREAL & 0 & Actual position (u) that is read out \\
\hline
\end{tabular}

\subsection*{9.1.2 MC_ReadActualVelocity (Read Current Velocity)}

This is a function block (FB) that reads the actual velocity of the axis.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{5}{*}{ Input } & Enable & BOOL & FALSE & \begin{tabular}{l}
Reads the actual velocity while \\
Enable is set to TRUE.
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & Valid & BOOL & FALSE & TRUE: Valid output \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 6 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\cline { 2 - 5 } & Velocity & LREAL & 0 & \begin{tabular}{l}
Current actual velocity (u/s) that is \\
read out
\end{tabular} \\
\hline
\end{tabular}

\subsection*{9.1.3 PMC_ReadActualTorque (Read Current Torque)}

This is a function block (FB) that reads the actual torque value of the axis.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Input \(/\) \\
output
\end{tabular}} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Enable & BOOL & FALSE & \begin{tabular}{l}
Reads the actual torque value while \\
Enable is set to TRUE.
\end{tabular} \\
\hline \multirow{4}{*}{\begin{tabular}{ll}
Output & Valid
\end{tabular} Busy } & BOOL & FALSE & TRUE: Valid output \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & Torque & LREAL & 0 & An error ID is output. \\
\hline
\end{tabular}

\subsection*{9.1 Motion Auxiliary Function (Monitoring)}

\subsection*{9.1.4 MC_ReadStatus (Read Status)}

This is a function block (FB) that reads the status information of the axis. It reads detailed information about the axis state.

■ Icon

- Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Enable & BOOL & FALSE & \begin{tabular}{l}
Reads the status information while \\
the input is TRUE.
\end{tabular} \\
\hline \multirow{6}{*}{ Output } & Valid & BOOL & FALSE & TRUE: Valid output \\
\cline { 2 - 6 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & Disabled & SMC_ERROR & 0 & An error ID is output.
\end{tabular}\(\left|\begin{array}{l}\text { TRUE: The axis is in the Disabled } \\
\text { state. }\end{array}\right|\)\begin{tabular}{l}
ErrorStop \\
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{6}{*}{} & SynchronizedMotion & BOOL & FALSE & \begin{tabular}{l}
TRUE: The axis is in the \\
SynchronizedMotion state.
\end{tabular} \\
\cline { 2 - 5 } & Homing & BOOL & FALSE & \begin{tabular}{l}
TRUE: The axis is in the Homing \\
state.
\end{tabular} \\
\cline { 2 - 5 } & ConstantVelocity & BOOL & FALSE & \begin{tabular}{l}
TRUE: The axis is moving at a \\
constant velocity.
\end{tabular} \\
\cline { 2 - 5 } & Accelerating & BOOL & FALSE & \begin{tabular}{l}
TRUE: The axis is moving in \\
acceleration.
\end{tabular} \\
\cline { 2 - 5 } & Decelerating & BOOL & FALSE & \begin{tabular}{l}
TRUE: The axis is moving in \\
deceleration.
\end{tabular} \\
\cline { 2 - 5 } & FBErrorOccured & BOOL & FALSE & TRUE: An FB error has occurred. \\
\hline
\end{tabular}

\section*{- Axis state}

The following section describes state transition diagram of the axis when the motion function blocks are executed.

\section*{State transition diagram}
- The blue frame indicates the state.
- When the function block indicated above the state is executed, the state transitions to the direction indicated by the solid-line arrow.
- When the execution is completed or when an error occurs, the state transitions to the state indicated at the tip of the broken-line arrow.
- The terms in parentheses are Japanese defined in PLCopen.

\subsection*{9.1 Motion Auxiliary Function (Monitoring)}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Num \\
ber
\end{tabular} & Transition conditions \\
\hline\((1)\) & Regardless of the state, when an error occurs in the axis \\
\hline\((2)\) & \begin{tabular}{l}
Regardless of the state, when Enable of MC_Power is TRUE, bRegulator is FALSE, and there is no \\
error in the axis
\end{tabular} \\
\hline\((3)\) & When Status of MC_Reset and Status of MC_Power are FALSE \\
\hline\((4)\) & \begin{tabular}{l}
When Enable of MC_Reset and Enable of MC_Power are TRUE, bRegulator is TRUE, and Status is \\
TRUE
\end{tabular} \\
\hline\((5)\) & When Enable of MC_Power is TRUE, bRegulator is TRUE, and Status is TRUE \\
\hline\((6)\) & When Done of MC_Stop is TRUE and Execute of MC_Stop is FALSE \\
\hline
\end{tabular}

\subsection*{9.1.5 SMC_InPosition (In-position Judgment)}

This is a function block (FB) that compares the actual position of the AMP with the command value and judges whether the position is within the specified range. The maximum difference between the actual position of the AMP and the command value as well as the dwell time are specified to judge (in-position judgment) whether the specified values are satisfied.

\section*{- Icon}

- Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Input \(/\) \\
output
\end{tabular}} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & bEnable & BOOL & FALSE & TRUE: Executes the FB. \\
\cline { 2 - 5 } & fPosWindow & LREAL & 0 & \begin{tabular}{l}
The maximum difference between \\
the actual position and the \\
command value to judge whether \\
the target position has been \\
reached.
\end{tabular} \\
\cline { 3 - 5 } & fPosTime & fTimeOut & LREAL & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{4}{*}{} & & & & \begin{tabular}{l}
value is within the time specified in \\
fPosTime, it is within the \\
fPosWindow.
\end{tabular} \\
\cline { 2 - 5 } & & & & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & bBusy & BOOL & FALSE & TRUE: Timeout has occurred. \\
\cline { 2 - 5 } & bTimeOut & BOOL & FALSE & \\
\hline
\end{tabular}

\subsection*{9.1.6 SMC_ReadFBError (Read Oldest Error)}

This is a function block (FB) that reads the oldest function block error information.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & bEnable & BOOL & FALSE & TRUE: The FB can be executed. \\
\hline \multirow{5}{*}{ Output } & bValid & BOOL & FALSE & \begin{tabular}{l}
TRUE: Error information is \\
acquired.
\end{tabular} \\
\cline { 2 - 5 } & bBusy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & bFBError & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & nFBErrorID & SMC_ERROR & 0 & An error ID is output. \\
\cline { 2 - 5 } & pbyErrorInstance & \begin{tabular}{l}
POINTER TO \\
BYTE
\end{tabular} & 0 & \begin{tabular}{l}
FB instance of the error acquisition \\
source
\end{tabular} \\
\cline { 2 - 5 } & strErrorInstance & STRING & " & \begin{tabular}{l}
FB instance name of the error \\
acquisition source
\end{tabular} \\
\cline { 2 - 5 } & tTimeStamp & TIME & TIME\#Oms & Time stamp of the error information \\
\hline
\end{tabular}

\section*{Note}
- The error information is cleared when SMC_ClearFBError is executed. When and error occurs again, SMC_ReadFBError reads the error.

\section*{- REFERENCE}

\subsection*{9.1.7 SMC_ClearFBError (Clear Oldest Error)}

\subsection*{9.1 Motion Auxiliary Function (Monitoring)}

\subsection*{9.1.7 SMC_ClearFBError (Clear Oldest Error)}

This function clears the oldest FB error information.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Type & \begin{tabular}{l}
Parameter \\
name
\end{tabular} & Type & Default & Description \\
\hline Input & pDrive & \begin{tabular}{l}
POINTER TO \\
AXIS_REF_SM3
\end{tabular} & - & Specifies the axis. \\
\hline Return & \begin{tabular}{l}
SMC_ClearFBE \\
rror
\end{tabular} & BOOL & & \begin{tabular}{l}
This function always returns FALSE even for \\
normal completion.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{9.1.8 SMC_CheckAxisCommunication (Check Axis Communication Status)}

This is a function block (FB) that checks the communication state of the axis.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & bEnable & BOOL & FALSE & TRUE: The FB can be executed. \\
\hline \multirow{4}{*}{ Output } & bValid & BOOL & FALSE & TRUE: The output value is valid. \\
\cline { 2 - 5 } & bError & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & eErrorID & SMC_ERROR & 0 & An error ID is output. \\
\cline { 2 - 5 } & bOperational & BOOL & FALSE & \begin{tabular}{l}
TRUE: Communication state is \\
operational. (100)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{4}{*}{} & eComState & \begin{tabular}{l}
SMC_Communic \\
ationState
\end{tabular} & \begin{tabular}{l}
SMC_COMSTAT \\
E_NOT_START \\
ED
\end{tabular} & Communication state \\
\cline { 2 - 5 } & wComState & WORD & 0 & \begin{tabular}{l}
Internal value of the communication \\
state
\end{tabular} \\
\hline
\end{tabular}

\section*{- SMC_CommunicationState (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline SMC_COMSTATE_NOT_STARTED & 0 & Stop \\
\hline \begin{tabular}{l}
SMC_COMSTATE_VARIABLE_INITIALIZA \\
TION
\end{tabular} & 1 & Initialization of variables \\
\hline \begin{tabular}{l}
SMC_COMSTATE_BASE_COM_INITIALIZ \\
ATION
\end{tabular} & 2 & \begin{tabular}{l}
Initialization of base communication \\
settings
\end{tabular} \\
\hline \begin{tabular}{l}
SMC_COMSTATE_DRIVE_INITIALIZATIO \\
N
\end{tabular} & 3 & Initialization of drive settings \\
\hline \begin{tabular}{l}
SMC_COMSTATE_DRIVE_WAITING_FOR \\
SYNC
\end{tabular} & 4 & Waiting for drive synchronization \\
\hline \begin{tabular}{l}
SMC_COMSTATE_INITIALIZATION_DON \\
E
\end{tabular} & 5 & Initialization completed \\
\hline SMC_COMSTATE_OPERATIONAL & 6 & Operational \\
\hline SMC_COMSTATE_REINITIALIZATION & 7 & Re-initialization \\
\hline SMC_COMSTATE_ERROR & 8 & Error \\
\hline SMC_COMSTATE_UNKNOWN & 9 & Unknown \\
\hline
\end{tabular}

\subsection*{9.1.9 SMC_CheckLimits (Check Exceeding Limits)}

This is a function block (FB) that checks whether the velocity, acceleration, or deceleration is in excess of the dynamic limit set value of the device.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{2}{*}{ Input } & bEnable & BOOL & FALSE & TRUE: The FB can be executed. \\
\cline { 2 - 5 } & bCheckVel & BOOL & TRUE & TRUE: Checks the velocity setting. \\
\hline
\end{tabular}

\subsection*{9.1 Motion Auxiliary Function (Monitoring)}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{4}{*}{ Output } & bCheckAccDec & BOOL & FALSE & \begin{tabular}{l}
TRUE: Checks the acceleration and \\
deceleration settings.
\end{tabular} \\
\cline { 2 - 5 } & bBusy & bError & BOOL & FALSE \\
TRUE: The FB is in operation. \\
\cline { 2 - 5 } & iErrorID & SMC_ERROR & 0 & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & bLimitsExceeded & BOOL & FALSE & An error ID is output. \\
\hline
\end{tabular}

\section*{1 Info.}
- Reference manual

GM1 Controller RTEX User's Manual (Operation Edition)

\subsection*{9.1.10 SMC_GetMaxSetAccDec (Measure Maximum Acceleration / Deceleration)}

This is a function block (FB) that measures the maximum value of the axis acceleration/ deceleration command.
- Icon

Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{3}{*}{ Input } & bEnable & BOOL & FALSE & TRUE: The FB can be executed. \\
\cline { 2 - 5 } & dwTimeStamp & DWORD & 0 & Time stamp \\
\hline \multirow{3}{*}{ Output } & bValid & BOOL & FALSE & TRUE: The output value is valid. \\
\cline { 2 - 5 } & bBusy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & fMaxAcceleration & LREAL & 0 & Maximum acceleration \(\left(\mathrm{u} / \mathrm{s}^{2}\right)\). \\
\cline { 2 - 5 } & dwTimeAtMax & DWORD & 0 & \begin{tabular}{l}
dwTimeStamp value at the \\
maximum acceleration
\end{tabular} \\
\hline
\end{tabular}

\section*{Note}
- It is possible to check when the maximum acceleration or deceleration has occurred by entering a call counter value in the input variable "dwTimeStamp".

\subsection*{9.1.11 SMC_GetMaxSetVelocity (Measure Maximum Velocity)}

This is a function block (FB) that measures the maximum value of the axis velocity command.

\section*{- Icon}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow{3}{*}{ Input } & bEnable & BOOL & FALSE & TRUE: The FB can be executed. \\
\cline { 2 - 5 } & dwTimeStamp & DWORD & 0 & Time stamp \\
\hline \multirow{4}{*}{ Output } & bValid & BOOL & FALSE & TRUE: The output value is valid. \\
\cline { 2 - 5 } & bBusy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & fMaxVelocity & LREAL & 0 & Maximum velocity (u/s). \\
\cline { 2 - 5 } & dwTimeAtMax & DWORD & 0 & \begin{tabular}{l}
dwTimeStamp value at the \\
maximum acceleration
\end{tabular} \\
\hline
\end{tabular}

\section*{Note}
- It is possible to check when the maximum velocity has occurred by entering a call counter value in the input variable "dwTimeStamp".

\subsection*{9.1.12 SMC_GetTrackingError (Measure Tracking Error)}

This is a function block (FB) that measures the tracking error of the actual position for the axis command position.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input / \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline
\end{tabular}

\subsection*{9.1 Motion Auxiliary Function (Monitoring)}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{5}{*}{ Input } & bEnable & BOOL & FALSE & TRUE: The FB can be executed. \\
\cline { 2 - 5 } & byDeadTimeCycles & BYTE & 2 & \begin{tabular}{l}
Number of dead time cycles \\
Compares the command position \\
and actual position between the \\
specified cycles.
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & bValid & DWORD & 0 & Time stamp \\
\cline { 2 - 5 } & dwTimeStamp & BOOL & FALSE & TRUE: The output value is valid. \\
\cline { 2 - 5 } & bBusy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & fActTrackingError & LREAL & 0 & Actual tracking error \\
\cline { 2 - 5 } & fMaxTrackingError & LREAL & 0 & \begin{tabular}{l}
Maximum tracking error while the \\
function block is being executed
\end{tabular} \\
\cline { 2 - 5 } & dwTimeAtMax & DWORD & 0 & \begin{tabular}{l}
dwTimeStamp value when the \\
maximum tracking error is detected
\end{tabular} \\
\hline
\end{tabular}

\section*{\(\square\) Note}
- It is possible to check when the maximum tracking error has occurred by entering a call counter value in the input variable "dwTimeStamp".

\subsection*{9.1.13 SMC_MeasureDistance (Measure Turnaround Travel Distance)}

This is a function block (FB) that measures the travel distance. For the modulo axis, the cover distance can be measured considering the laps.

\section*{- Icon}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & bExecute & BOOL & FALSE & \begin{tabular}{l}
TRUE: Starts measurement at the \\
rising edge. \\
FALSE: Ends measurement.
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & fDistance & LREAL & 0 & \begin{tabular}{l}
Distance traveled from the start of \\
measurement
\end{tabular} \\
\cline { 2 - 5 } & bBusy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & bError & BOOL & 0 & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & nErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\subsection*{9.1.14 SMC_ReadSetPosition (Read Axis Set Position)}

This is a function block (FB) that acquires the command position of the axis.

\section*{- Icon}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Input \(/\) \\
output
\end{tabular}} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Enable & BOOL & FALSE & TRUE: Executes the FB. \\
\hline \multirow{4}{*}{ Output } & Valid & BOOL & FALSE & TRUE: The output value is valid. \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\cline { 2 - 5 } & Position & LREAL & 0 & Axis position \\
\hline
\end{tabular}

\subsection*{9.2 Motion Auxiliary Function (Change / Reset)}

\subsection*{9.2.1 MC_Reset (Axis Error Reset)}

This is a function block (FB) that resets the state transition error of the axis. It reset the axis error and transitions the state from the ErrorStop state to the StandStill state.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline \multirow{4}{*}{ Output } & Done & BOOL & FALSE & TRUE: Reset done \\
\cline { 2 - 5 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\subsection*{9.2.2 MC_SetPosition (Change Current Position)}

This is a function block (FB) that changes the current command position of the axis.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Execute & BOOL & FALSE & Starts execution at the rising edge. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{6}{*}{} & Position & LREAL & 0 & \begin{tabular}{l}
Specifies the position when the \\
mode is set to ABSOLUTE. \\
Specifies the distance when the \\
mode is set to RELATIVE.
\end{tabular} \\
\cline { 2 - 5 } & Mode & BOOL & FALSE & \begin{tabular}{l}
TRUE: RELATIVE (Relative \\
position) \\
FALSE: ABSOLUTE (Absolute \\
position)
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & Done & BOOL & FALSE & \begin{tabular}{l}
TRUE: Position change is \\
completed.
\end{tabular} \\
\cline { 2 - 6 } & Busy & BOOL & FALSE & \begin{tabular}{l}
TRUE: Execution of the FB is not \\
completed.
\end{tabular} \\
\cline { 2 - 5 } & Error & BOOL & FALSE & TRUE: An error has occurred. \\
\cline { 2 - 5 } & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline
\end{tabular}

\subsection*{9.3 Motion Auxiliary Function (Other Functions)}

\subsection*{9.3.1 PMC_ReadLatchPosition (Amplifier Latch Monitor)}

This is a function block (FB) that monitor the AMP latch position. It reads the axis position when a trigger signal occurs.
- Icon

- Parameter
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline Input / output & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline \multirow[t]{5}{*}{Input} & Execute & BOOL & FALSE & \begin{tabular}{l}
TRUE: Starts execution at the rising edge. \\
FALSE: Stops processing.
\end{tabular} \\
\hline & nStartCancelState & IoDRVRTEX.LAT CH_STATE & \[
\begin{aligned}
& \text { MONITOR_LAT } \\
& \mathrm{CH}
\end{aligned}
\] & Specifies the start and cancellation of the latch mode. \\
\hline & nLatchTrg1 & IoDRVRTEX.LAT CH_TRIGGER & Z_PHASE & Selects the trigger signal for latch position 1 \\
\hline & nLatchTrg2 & IoDRVRTEX.LAT CH_TRIGGER & - & Selects the trigger signal for latch position 2 \\
\hline & nMonitorSel & \begin{tabular}{l}
IoDRVRTEX.MO \\
NITOR_SELECT
\end{tabular} & & Selects the latch position to be output as the output MonitorData. \\
\hline \multirow[t]{6}{*}{Output} & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & Done & BOOL & FALSE & TRUE: Output is completed. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline & MonitorData & LREAL & & Axis position is output. \\
\hline
\end{tabular}

\section*{- IoDRVRTEX.LATCH_STATE (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline MONITOR_LATCH & 80 & Monitors the position latch state. \\
\hline
\end{tabular}

\subsection*{9.3 Motion Auxiliary Function (Other Functions)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline & & Monitors the state without newly starting or canceling. \\
\hline START_LATCH1 & 81 & Starts the position latch \(1(\mathrm{CH} 1)\). \\
\hline START_LATCH2 & 82 & Starts the position latch \(2(\mathrm{CH} 2)\). \\
\hline START_LATCH1_AND2 & 83 & \begin{tabular}{l}
Starts the position latch \(1(\mathrm{CH} 1)\) and position latch 2 \\
(CH2).
\end{tabular} \\
\hline CANCEL_LATCH1 & 84 & Cancels the position latch \(1(\mathrm{CH} 1)\). \\
\hline CANCEL_LATCH2 & 88 & Cancels the position latch \(2(\mathrm{CH} 2)\). \\
\hline CANCEL_LATCH1_AND2 & 92 & \begin{tabular}{l}
Cancels the position latch \(1(\mathrm{CH} 1)\) and position latch 2 \\
(CH2).
\end{tabular} \\
\hline
\end{tabular}

■ IoDRVRTEX.LATCH_TRIGGER (Enumeration type)
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline Z_PHASE & 0 & Z phase \\
\hline EXT1_RISING_EDGE & 1 & Rising edge of EXT1 \\
\hline EXT2_RISING_EDGE & 2 & Rising edge of EXT2 \\
\hline EXT3_RISING_EDGE & 3 & Rising edge of EXT3 \\
\hline PR7_111_RISING_EDGE & 7 & Not used for this FB. \\
\hline EXT1_FALLING_EDGE & 9 & Falling edge of EXT1 \\
\hline EXT2_FALLING_EDGE & 10 & Falling edge of EXT2 \\
\hline EXT3_FALLING_EDGE & 11 & Falling edge of EXT3 \\
\hline PR7_111_FALLING_EDGE & 15 & Not used for this FB. \\
\hline
\end{tabular}

\section*{- IoDRVRTEX.MONITOR_SELECT (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline LPOS1 & 9 & Latch position 1 \\
\hline LPOS2 & 10 & Latch position 2 \\
\hline
\end{tabular}
- Operations when the function block is executed

The PMC_ReadLatchPosition function block outputs the following error.

\subsection*{9.3 Motion Auxiliary Function (Other Functions)}
\begin{tabular}{|l|l|}
\hline Error & Description \\
\hline \multirow{3}{*}{ SMC_WRONG_CONTROLLER_MODE } & \begin{tabular}{l}
Executed in a mode other than the position control \\
mode. \\
Change to SMC_position using \\
SMC_SetControllerMode.
\end{tabular} \\
\hline \multirow{3}{*}{ SMC_RP_DRIVE_PARAMETER_NOT_MAPPED } & \begin{tabular}{l}
Specified nLatchTrg1 and nLatchTrg2 to not use.
\end{tabular} \\
\begin{tabular}{l}
Allocation of EXT1, EXT2, and EXT3 to the servo \\
amplifier is faulty. \\
Change the settings for Pr4.04 to Pr4.06.
\end{tabular} \\
\hline
\end{tabular}

As the PMC_ReadLatchPosition function block uses the RTEX home return command, it cannot be executed together with PMC_Home.
If PMC_ReadLatchPosition is executed while PMC_Home is being executed, the CommandAborted parameter of PMC_ReadLatchPosition becomes TRUE.
When using EXT1, EXT2, and EXT3 for nLatchTrg1 and nLatchTrg2, set amplifier parameters as shown in the following table.
\begin{tabular}{|l|l|l|}
\hline Parameter & Parameter name & Settings \\
\hline Pr4.04 & SI5 input selection & EXT1 \\
\hline Pr4.05 & SI6 input selection & EXT2 \\
\hline Pr4.06 & SI7 input selection & EXT3 \\
\hline
\end{tabular}

\subsection*{9.3.2 PMC_StopLatchPosition (Stop Amplifier Latch)}

This is a function block (FB) that stops monitoring the AMP latch position. It stops the axis when a trigger event occurs.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \begin{tabular}{l}
Input \(/\) \\
output
\end{tabular} & Axis & AXIS_REF_SM3 & - & Specifies the axis. \\
\hline Input & Execute & BOOL & FALSE & \begin{tabular}{l}
TRUE: Starts execution at the rising \\
edge. \\
FALSE: Stops processing.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{9.3 Motion Auxiliary Function (Other Functions)}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow[t]{6}{*}{} & nLatchTrg1 & IoDRVRTEX.LAT CH_TRIGGER & EXT1_RISING_ EDGE & Selects the trigger signal for latch position \\
\hline & Velocity & LREAL & 0 & Specifies the velocity (\(\mathrm{u} / \mathrm{s}\)). \\
\hline & Acceleration & LREAL & 0 & Specifies the acceleration (\(\mathrm{u} / \mathrm{s}^{2}\)). \\
\hline & Deceleration & LREAL & 0 & Specifies the deceleration (\(\mathrm{u} / \mathrm{s}^{2}\)). \\
\hline & Jerk & LREAL & 0 & Specifies the jerk (u/s \({ }^{3}\)). \\
\hline & Direction & MC_Direction & negative & Specifies the traveling direction of the axis. \\
\hline \multirow[t]{7}{*}{Output} & InVelocity & BOOL & FALSE & TRUE: The axis has reached the specified velocity for the first time. \\
\hline & CommandAborted & BOOL & FALSE & TRUE: An interruption from other FB has occurred. \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & Done & BOOL & FALSE & TRUE: Stopping is completed. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline & MonitorData & LREAL & & Axis position is output. \\
\hline
\end{tabular}

\section*{■ IoDRVRTEX.LATCH_TRIGGER (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline Z_PHASE & 0 & Not used for this FB. \\
\hline EXT1_RISING_EDGE & 1 & Rising edge of EXT1 \\
\hline EXT2_RISING_EDGE & 2 & Rising edge of EXT2 \\
\hline EXT3_RISING_EDGE & 3 & Rising edge of EXT3 \\
\hline PR7_111_RISING_EDGE & 7 & Condition set by MINAS amplifier parameter Pr7.111 \\
\hline EXT1_FALLING_EDGE & 9 & Falling edge of EXT1 \\
\hline EXT2_FALLING_EDGE & 10 & Falling edge of EXT2 \\
\hline EXT3_FALLING_EDGE & 11 & Falling edge of EXT3 \\
\hline PR7_111_FALLING_EDGE & 15 & Condition set by MINAS amplifier parameter Pr7.111 \\
\hline
\end{tabular}

\section*{MC_Direction (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline positive & 1 & Travels in the positive direction. \\
\hline negative & -1 & Travels in the negative direction. \\
\hline shortest & 0 & Not available. Do not specify this. \\
\hline fastest & 3 & Not available. Do not specify this. \\
\hline current & 2 & \begin{tabular}{l}
Travels to the current direction. \\
Possible to use only for the modulo axis.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{9.3 Motion Auxiliary Function (Other Functions)}

\section*{■ Operations when the function block is executed}

- Execute = TRUE: Starts the latch mode. Execute = FALSE: Ends the latch, however, the axis operation continues as long as PMC_StopLatchPosition is called. Stop the axis using either MC_Stop or MC_Halt.
- When a trigger signal is input, the PMC_StopLatchPosition function block ignores the command value from the GM1 and stops at the latch position.
- Execution errors

The PMC_StopLatchPosition function block outputs the following error.
\begin{tabular}{|l|l|}
\hline Error & Description \\
\hline \multirow{3}{*}{ SMC_WRONG_CONTROLLER_MODE } & \begin{tabular}{l}
Executed in a mode other than the position control \\
mode. \\
Change to SMC_position using \\
SMC_SetControllerMode.
\end{tabular} \\
\hline \multirow{3}{*}{ SMC_RP_DRIVE_PARAMETER_NOT_MAPPED } & \begin{tabular}{l}
Specified nLatchTrg1 to not use.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l}
Allocation of EXT1, EXT2, and EXT3 to the servo \\
amplifier is faulty. \\
Change the settings for Pr4.04 to Pr4.06.
\end{tabular} \\
\hline SMC_DI_HOMING_ERROR & Servo amplifier version is lower than V1.24.
\end{tabular} \begin{tabular}{l}
The axis is in a state (Stopping, Disabled, or Errorstop) \\
where PMC_StopLatchPosition cannot be executed.
\end{tabular}, \begin{tabular}{l}
The servo OFF or brake is applied. \\
\hline SMC_REGUS_NOT_READY_FOR_MOTION
\end{tabular}
\begin{tabular}{|l|l|}
\hline Error & Description \\
\hline SMC_3SH_INVALID_VELACC_VALUES & \begin{tabular}{l}
The input (Velocity, Acceleration, or Deceleration) is \\
faulty.
\end{tabular} \\
\hline SMC_AXIS_REF_CHANGED_DURING_OPERATION & The Axis was changed during operation. \\
\hline
\end{tabular}

\section*{- Execution conditions}
- As the PMC_StopLatchPosition function block uses the RTEX home return command, it cannot be executed together with PMC_Home.
- To use the PMC_StopLatchPosition function block, the MINAS version must be V1.23 or higher.
- The function block supports only the control cycle of 1.0 ms and communication cycle of 0.5 ms .

\section*{- Amplifier parameter conditions}

When using EXT1, EXT2, and EXT3 for nLatchTrg1, set amplifier parameters as shown in the following table.
\begin{tabular}{|l|l|l|}
\hline Parameter & Parameter name & Settings \\
\hline Pr4.04 & SI5 input selection & EXT1 \\
\hline Pr4.05 & SI6 input selection & EXT2 \\
\hline Pr4.06 & SI7 input selection & EXT3 \\
\hline
\end{tabular}

\subsection*{9.3.3 MC_DigitalCamSwitch (Enable Digital Cam Switch)}

This is a function block (FB) that performs ON / OFF control on the digital output according to the axis position. It assigns digital cam switches to tracks (maximum of 32). Switching operations can be controlled by specifying the ON / OFF position for each digital camp switch.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Input \(/\) \\
output
\end{tabular}} & Axis & AXIS_REF_SM3 & - & \begin{tabular}{l}
Specifies the axis where the switch \\
is connected.
\end{tabular} \\
\cline { 2 - 5 } & Switches & \begin{tabular}{l}
MC_CAMSWITC \\
H_REF
\end{tabular} & - & Specifies the switching operation. \\
\hline
\end{tabular}

\subsection*{9.3 Motion Auxiliary Function (Other Functions)}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow[t]{2}{*}{} & Outputs & \[
\begin{aligned}
& \text { MC_OUTPUT_R } \\
& \text { EF }
\end{aligned}
\] & - & ON or OFF of the switch is output. ARRAY [1..32] OF BOOL \\
\hline & TrackOptions & \[
\begin{aligned}
& \mathrm{MC} \\
& \mathrm{~F}
\end{aligned}
\] & - & Specifies the property of the track. ARRAY [1..32] OF MC_TRACK_TR \\
\hline \multirow[t]{3}{*}{Input} & Enable & BOOL & FALSE & TRUE: The FB can be executed. \\
\hline & EnableMask & DWORD & 16\#FFFFFFFF & \begin{tabular}{l}
Specifies the track to be enabled. \\
1: Enabled, 0: Disabled \\
The least significant bit is the 1st track. \\
The most significant bit is the 32nd track.
\end{tabular} \\
\hline & TappetMode & MC_TAPPETMO DE & tp_mode_auto & Specifies the tappet mode. \\
\hline \multirow[t]{5}{*}{Output} & InOperation & BOOL & FALSE & TRUE: The track is enabled. \\
\hline & Busy & BOOL & FALSE & TRUE: Execution of the FB is not completed. \\
\hline & Error & BOOL & FALSE & TRUE: An error has occurred within the FB. \\
\hline & ErrorID & SMC_ERROR & 0 & An error ID is output. \\
\hline & SwitchCorrupted & INT & -1 & Index output of a faulty switch -1: No problem 0 to 31: A problem has occurred in switches 1 to 32. \\
\hline
\end{tabular}

\section*{MC_CAMSWITCH_REF (Structure)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline NoOfSwitches & BYTE & \begin{tabular}{l}
Number of switches \\
Specifies the number of switches to be enabled when the \\
FB is executed in the MC_CAMSWITCH_TR type array (1 \\
to 32).
\end{tabular} \\
\hline CamSwitchPtr & \begin{tabular}{l}
POINTER TO \\
MC_CAMSWITCH_TR
\end{tabular} & \begin{tabular}{l}
Pointer to the first element of the MC_CAMSWITCH_TR \\
type array
\end{tabular} \\
\hline
\end{tabular}

■ MC_CAMSWITCH_TR (Structure)
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline TrackNumber & INT & Switch track number (1 to 32) \\
\hline FirstOnPosition & LREAL & \begin{tabular}{l}
Position where the switch turns ON when the axis is \\
moving in the positive direction
\end{tabular} \\
\hline LastOnPosition & \begin{tabular}{l}
Position where the switch turns OFF when the axis is \\
moving in the positive direction \\
Not used when CamSwitchMode is set to 1.
\end{tabular} \\
\hline AxisDirection & INT & \begin{tabular}{l}
Movement direction where the switch is enabled \\
0: Both positive and negative directions \\
1: Only positive direction \\
2: Only negative direction
\end{tabular} \\
\hline
\end{tabular}

\subsection*{9.3 Motion Auxiliary Function (Other Functions)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline CamSwitchMode & INT & \begin{tabular}{l}
Control method that performs switch ON / OFF control \\
\(0:\) ON and OFF are both controlled by the position. \\
\(1:\) ON is controlled by the position and OFF is controlled \\
by the time.
\end{tabular} \\
\hline Duration & TIME & \begin{tabular}{l}
Specifies the time during which the switch remains ON for \\
when CamSwitchMode is set to 1.
\end{tabular} \\
\hline bOn & BOOL & Used within the FB. \\
\hline CounterOff & INT & Used within the FB. \\
\hline
\end{tabular}

MC_TRACK_REF (Structure)
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline OnCompensation & LREAL & \begin{tabular}{l}
Specifies the switch ON delay time in seconds. \\
When a positive value is specified, the switch turns ON \\
later by the time specified. \\
When a negative value is specified, the switch turns ON \\
earlier by the time specified.
\end{tabular} \\
\hline OffCompensation & LREAL & \begin{tabular}{l}
Specifies the switch OFF delay time in seconds. \\
When a positive value is specified, the switch turns OFF \\
after a delay of the time specified. \\
When a negative value is specified, the switch turns OFF \\
earlier by the time specified.
\end{tabular} \\
\hline Hysteresis & LREAL & Specifies the hysteresis value (position). \\
\hline
\end{tabular}

\section*{■ MC_TAPPETMODE (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline tp_mode_auto & 0 & \begin{tabular}{l}
Automatically determined according to the state. \\
Servo ON state: Command position (fSetPosition) of the \\
master axis \\
Servo OFF state: Actual position (fActPosition) of the \\
master axis
\end{tabular} \\
\hline tp_mode_demandposition & 1 & Command state (fSetPosition) of the master axis \\
\hline tp_mode_actualposition & 2 & Actual state (fActPosition) of the master axis \\
\hline
\end{tabular}

Regarding the method for entering defaults for variables of the MC_CAMSWITCH_TR type structure, refer to "Default Setting for Variables of the MC_TP_REF Type Structure".

\section*{- Operations when the function block is executed}

The following sections shows switching operations (Outputs) of each track when the function block is executed after setting the parameter as follows. The axis is set to the modulo (modulo value: 1000).

\section*{Function block input parameters}

Five switches (CamSwitchPtr) are set.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Switch & Index & \begin{tabular}{l}
Track \\
Number
\end{tabular} & \begin{tabular}{l}
FirstOn \\
Position
\end{tabular} & \begin{tabular}{l}
LastOn \\
Position
\end{tabular} & Axis Direction & \begin{tabular}{l}
Cam \\
SwitchMode
\end{tabular} & Duration \\
\hline\((1)\) & 1 & 1 & 100 & 200 & 0 (Both) & 0 (Position) & T\#0ms \\
\hline
\end{tabular}

\subsection*{9.3 Motion Auxiliary Function (Other Functions)}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Switch & Index & \begin{tabular}{l}
Track \\
Number
\end{tabular} & \begin{tabular}{l}
FirstOn \\
Position
\end{tabular} & \begin{tabular}{l}
LastOn \\
Position
\end{tabular} & Axis Direction & \begin{tabular}{l}
Cam \\
SwitchMode
\end{tabular} & Duration \\
\hline\((2)\) & 2 & 1 & 500 & 700 & 0 (Both) & 0 (Position) & T\#0ms \\
\hline\((3)\) & 3 & 2 & 300 & 500 & \begin{tabular}{l}
1 (Positive \\
direction)
\end{tabular} & 0 (Position) & T\#0ms \\
\hline\((4)\) & 4 & 2 & 700 & 800 & \begin{tabular}{l}
2 (Negative \\
direction)
\end{tabular} & 0 (Position) & T\#0ms \\
\hline\((5)\) & 5 & 3 & 400 & 0 & 0 (Both) & 1 (Time) & T\#5s \\
\hline
\end{tabular}

\section*{Switching operations when the axis is moved in the positive direction}
(1) to (5) are switch numbers.

Switching operations when the axis is moved in the negative direction

\section*{- Detection of faulty switch operation (SwitchCorrupted)}

SwitchCorrupted occurs when the switch does not turn ON/OFF as set.

\section*{——REFERENCE}
5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure

\subsection*{9.3.4 SMC_BacklashCompensation (Compensate Backlash)}

This is a function block (FB) that compensates the backlash.
- Icon

\section*{- Parameter}
\begin{tabular}{|c|c|c|c|c|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow[t]{2}{*}{Input / output} & Master & AXIS_REF_SM3 & - & Specifies the master axis. \\
\hline & Slave & AXIS_REF_SM3 & - & Specifies the slave axis. \\
\hline \multirow[t]{6}{*}{Input} & bExecute & BOOL & FALSE & Starts execution at the rising edge. Remains enabled until the slave axis is interrupted by another operation or until an error occurs. \\
\hline & fBacklash & LREAL & 0 & Distance to compensate (backlash) \\
\hline & fCompensationVel & LREAL & 0 & Additional velocity used when compensation is performed (A value to be added to the master axis velocity) \\
\hline & fCompensationAcc & LREAL & 0 & Additional acceleration used when compensation is performed (A value to be the maximum acceleration when compensation is performed) \\
\hline & fCompensationDec & LREAL & 0 & \begin{tabular}{l}
Additional deceleration used when compensation is performed. \\
(A value to be the maximum deceleration when compensation is performed)
\end{tabular} \\
\hline & fCompensationJerk & LREAL & 0 & Additional jerk used when compensation is performed (Even if any value is set, the setting is disabled.) \\
\hline
\end{tabular}

\subsection*{9.3 Motion Auxiliary Function (Other Functions)}
\begin{tabular}{|l|l|l|l|l|}
\hline Scope & Name & Type & Initial & Description \\
\hline \multirow{5}{*}{} & eBacklashMode & \begin{tabular}{l}
SMC_BACKLAS \\
H_MODE
\end{tabular} & SMC_BL_AUTO & Backlash compensation mode \\
\cline { 2 - 6 } & eBacklashStartState & \begin{tabular}{l}
SMC_BACKLAS \\
H_STARTSTATE
\end{tabular} & \begin{tabular}{l}
SMC_BL_STAR \\
T_NONE
\end{tabular} & \begin{tabular}{l}
Specifies the start conditions \\
whether compensation is required \\
or not when starting the backlash \\
compensation.
\end{tabular} \\
\hline \multirow{5}{*}{ Output } & bBusy & BOOL & FALSE & TRUE: The FB is in operation. \\
\cline { 2 - 6 } & bCommandAborted & BOOL & FALSE & \begin{tabular}{l}
TRUE: An interruption from other \\
FB has occurred.
\end{tabular} \\
\cline { 2 - 5 } & bError & BOOL & FALSE & \begin{tabular}{l}
TRUE: An error has occurred within \\
the FB.
\end{tabular} \\
\cline { 2 - 5 } & iErrorID & SMC_ERROR & 0 & An error ID is output. \\
\cline { 2 - 5 } & bCompensating & BOOL & FALSE & \begin{tabular}{l}
TRUE: Backlash compensation in \\
operation
\end{tabular} \\
\hline
\end{tabular}

\section*{MC_BACKLASH_MODE (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline SMC_BL_AUTO & 2 & \begin{tabular}{l}
Compensation in the traveling direction of \\
the master axis
\end{tabular} \\
\hline SMC_BL_POSITIVE & 1 & Compensation in the positive direction \\
\hline SMC_BL_NEGATIVE & -1 & Compensation in the negative direction \\
\hline SMC_BL_OFF & 0 & No backlash compensation \\
\hline
\end{tabular}

\section*{SMC_BACKLASH_STARTSTATE (Enumeration type)}
\(\left.\begin{array}{|l|l|l|}\hline \text { Name } & \text { Value } & \text { Description } \\
\hline \text { SMC_BL_START_NEGATIVE } & -1 & \begin{array}{l}\text { If the slave axis is driven in the negative } \\
\text { direction when compensation is started: } \\
\text { - To make the axis travel in the positive } \\
\text { direction, compensation is required for } \\
\text { the backlash distance (fBacklash). } \\
\text { - No compensation is required for the } \\
\text { travels in the negative direction. }\end{array} \\
\hline \text { SMC_BL_START_NONE } & 0 & \begin{array}{l}\text { If the slave axis is not driven in either } \\
\text { direction when compensation is started: } \\
\text { To make the axis travel in the positive or } \\
\text { negative direction, compensation is } \\
\text { required for half the amount of the backlash } \\
\text { distance (fBacklash). }\end{array} \\
\hline \text { SMC_BL_START_POSITIVE } & 1 & \begin{array}{l}\text { If the slave axis is driven in the positive } \\
\text { direction when compensation is started: } \\
\text { - } \\
\text { No compensation is required for the } \\
\text { travels in the positive direction. }\end{array} \\
\text { - To make the axis travel in the negative } \\
\text { direction, compensation is required for } \\
\text { the backlash distance (fBacklash). }\end{array}\right\}\)\begin{tabular}{l}
\\
\hline
\end{tabular}
- When starting operation, make sure that both the master axis and slave axis are in the same position. If they are not set at the same position, the slave axis travels to the master
\(!\) axis position at the moment when SMC_BacklashCompensation is executed.
- SMC_BacklashCompensation functions in the same way as the phase synchronous operation (MC_Phasing) and the phase depends on the master axis direction.
(MEMO)

\section*{10 Other Function Blocks}
10.1 COM Port (General-purpose Communication) 10-4
10.1.1 COM.Open (Open COM port) 10-4
10.1.2 COM.Close (Close COM Port) 10-6
10.1.3 COM.Read (Read COM Port) 10-7
10.1.4 COM.Write (Write COM Port) 10-8
10.1.5 COM.ERROR (Error ID) 10-8
10.2 COM port (Modbus COM) 10-10
10.2.1 loDrvModbusComPort 10-10
10.2.2 IoDrvModbus.ModbusChannel(Start Sending Modbus Command) 10-10
10.2.3 IoDrvModbus.ModbusRequest (Modbus Request) 10-11
10.2.4 loDrvModbus.ModbusRequest 2 (Modbus Request 2) 10-12
10.2.5 loDrvModbus.ModbusSlaveComPort 10-14
10.2.6 loDrvModbus.MB_ErrorCodes (Error Codes) 10-14
10.3 LAN port (loDrvEthernet) 10-16
10.3.1 loDrvEthernet 10-16
10.3.2 loDrvEthernet.IPARRAY_TO_INADDR (Array Type to Union Type) 10-16
10.3.3 IoDrvEthernet.IPARRAY_TO_IPSTRING (Array Type to Character String Type) 10-17
10.3.4 loDrvEthernet.IPARRAY_TO_UDINT (Array Type to UDINT Type) 10-17
10.3.5 IoDrvEthernet.IPSTRING_TO_UDINT (Character String Type to UDINT Type) 10-18
10.3.6 loDrvEthernet.UDINT_TO_IPARRAY (UDINT Type to Array Type) 10-18
10.3.7 loDrvEthernet.UDINT_TO_IPSTRING (UDINT Type to Character String Type) 10-18
10.4 LAN Port (General-purpose Communication) 10-20
10.4.1 NBS.TCP_Client (Connect to TCP Client) 10-20
10.4.2 NBS.TCP_Connection (Connect TCP) 10-20
10.4.3 NBS.TCP_Read (Receive TCP Data) 10-21
10.4.4 NBS.TCP_Server (Connect TCP Server) 10-22
10.4.5 NBS.TCP_Write (Send TCP Data) 10-23
10.4.6 NBS.UDP_Peer (Open UDP Port) 10-23
10.4.7 NBS.UDP_Receive (Receive UDP Data) 10-24
10.4.8 NBS.ERROR (Error Code) 10-25
10.4.9 NBS.UDP_Send (Send UDP Data) 10-26
10.5 LAN Port (Modbus TCP) 10-28
10.5.1 loDrvModbusTCP 10-28
10.5.2 IoDrvModbusTCP.ModbusChannel (Start Sending Modbus Command) 10-28
10.5.3 loDrvModbusTCP.ModbusRequest (Modbus Request) 10-29
10.5.4 IoDrvModbusTCPSIave 10-30
10.5.5 loDrvModbus.MB_ErrorCodes (Error Codes) 10-31
10.6 LAN Port (EtherNet/IP) 10-33
10.6.1 loDrvEtherNetIP (EtherNet/IP Scanner Device) 10-33
10.6.2 RemoteAdapter (Remote Adapter Device) 10-34
10.6.3 loDrvEtherNetIPAdapter (EtherNet/IP adapter device) 10-36
10.6.4 Module (EtherNet/IP Module Device) 10-37
10.6.5 Apply_Attributes (Apply_Attributes Service) 10-38
10.6.6 Generic_Service (Generic Service Execution) 10-39
10.6.7 Get_Attribute_Single (Inquire Specific Attributes of a Specific Instance) 10-40
10.6.8 Get_Attributes_All (Inquire All Attributes of a Specific Instance) 10-41
10.6.9 Set_Attribute_Single (Set Specific Attributes of a Specific Instance) 10-42
10.6.10 Set_Attributes_All (Set All Attributes of a Specific Instance) 10-43
10.6.11 NOP (NOP Service) 10-44
10.6.12 Reset (Reset Service) 10-45
10.6.13 Start (Start Service) 10-45
10.6.14 Stop (Stop Service) 10-46
10.6.15 ENIP.ERROR (Message Service Instruction Error Code) 10-47
10.6.16 ENIP.CIPClass (Service Class Code) 10-49
10.7 SD Card Operation (File Operation) 10-52
10.7.1 FILE.Open (Open File) 10-52
10.7.2 FILE.Close (Close File) 10-53
10.7.3 FILE.Read (Read File) 10-53
10.7.4 FILE.Write (Write File) 10-54
10.7.5 FILE.Flush (Flush File) 10-55
10.7.6 FILE.Copy (Copy File) 10-56
10.7.7 FILE.Rename (Rename File) 10-57
10.7.8 FILE.Delete (Delete File) 10-58
10.7.9 FILE.EOF (End of File) 10-58
10.7.10 FILE.GetAttribute (Get File Attribute) 10-59
10.7.11 FILE.GetPos (Get File Offset) 10-60
10.7.12 FILE.GetSize (Get File Size) 10-60
10.7.13 FILE.GetTime (Get File Update Time) 10-61
10.7.14 FILE.SetPos (Set File Offset) 10-62
10.7.15 FILE.ERROR (Error ID) 10-62
10.8 SD Card Operation (Directory Operation) 10-64
10.8.1 FILE.DirCreate (Create Directory) 10-64
10.8.2 FILE.DirOpen (Open Directory) 10-64
10.8.3 FILE.DirClose (Close Directory) 10-65
10.8.4 FILE.DirCopy (Copy Directory) 10-66
10.8.5 FILE.DirRename (Rename Directory) 10-67
10.8.6 FILE.DirRemove (Delete Directory) 10-67
10.8.7 FILE.DirList (Directory List) 10-68
10.9 Clock Setting 10-70
10.9.1 SYS_GetTime (Get Time) 10-70
10.9.2 SYS_SetTime (Set Time) 10-70
10.9.3 SYS_GetTimezone (Get Time Zone Information) 10-71
10.9.4 SYS_SetTimezone (Set Time Zone Information) 10-71
10.9.5 SYS_DateConcat (Convert from UINT Type to DATE Type) 10-72
10.9.6 SYS DateSplit (Convert from DATE Type to UINT Type) 10-73
10.9.7 SYS_DTConcat (Convert from UINT Type to DT Type) 10-73
10.9.8 SYS_DTSplit (Convert from UINT Type to DT Type) 10-74
10.9.9 SYS_GetDayOfWeek (Get Day of the Week) 10-75
10.9.10 SYS_TODConcat (Convert from UINT Type to TOD Type) 10-75
10.9.11 SYS_TODSplit (Convert from TOD Type to UINT Type) 10-76
10.9.12 ERROR (Clock Instruction Error Code) 10-77
10.10 System Data 10-78
10.10.1 SYS_GetSystemError (Get System Error) 10-78

\subsection*{10.1 COM Port (General-purpose Communication)}

\subsection*{10.1 COM Port (General-purpose Communication)}

This section describes function blocks that are used to perform general-purpose communication with the COM port.

\subsection*{10.1.1 COM.Open (Open COM port)}

This is a function block that opens a COM port. It reads from and writes to the COM port using the output handle. Close the opened COM port using the COM.Close instruction.
- Icon

- Parameter
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{3}{*}{Input} & xExecute & BOOL & Starts execution at the rising edge. \\
\hline & \begin{tabular}{l}
usiListLengt \\
h
\end{tabular} & USINT & Number of pParameterList entries \\
\hline & pParameter List & \[
\begin{aligned}
& \text { COM.CAA.P } \\
& \text { VOID }
\end{aligned}
\] & \begin{tabular}{l}
A pointer to the communication setting parameter list for the COM port. \\
Specifies the pointer to the COM.PARAMETER structure array.
\end{tabular} \\
\hline \multirow[t]{5}{*}{Output} & xDone & BOOL & TRUE: Execution is completed. \\
\hline & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\hline & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline & eError & COM.ERRO R & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.1.5 COM.ERROR (Error ID)".
\end{tabular} \\
\hline & hCom & COM.CAA. HANDLE & Handle of the opened COM port. \\
\hline
\end{tabular}

\section*{- COM.PARAMETER (Structure)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline udiParameterld & UDINT & \begin{tabular}{l}
Parameter ID to be set in the COM port. \\
For a list of parameters, refer to \\
"COM.CAA_Parameter_Constants \\
(Constants)".
\end{tabular} \\
\hline udiValue & UDINT & Value to be set in the COM port \\
\hline
\end{tabular}

\section*{- COM.CAA_Parameter_Constants (Constants)}
\begin{tabular}{|l|l|l|l|}
\hline Name & Value & Support & Description \\
\hline udiPort & \(16 \# 1\) & Supported & Port number (Fixed to 1.) \\
\hline udiStopBits & \(16 \# 2\) & Supported & \begin{tabular}{l}
Stop bit \\
Refer to "COM.STOPBIT \\
(Enumeration type)".
\end{tabular} \\
\hline udiParity & \(16 \# 3\) & Supported & \begin{tabular}{l}
Parity \\
Refer to "COM.PARITY \\
(Enumeration type)".
\end{tabular} \\
\hline udiBaudrate & \(16 \# 4\) & Supported & \begin{tabular}{l}
Baud rate (Can be selected from \\
\(1200,2400,4800,9600,19200\), \\
38400,57600, and 115200)
\end{tabular} \\
\hline udiTimeout & \(16 \# 5\) & Not supported & Timeout \\
\hline udiBufferSize & \(16 \# 6\) & Supported & \begin{tabular}{l}
Byte size parameter \\
Sets the number of data bits to 4 to \\
8.
\end{tabular} \\
\hline udiByteSize & Specify 7 or 8 for the GM1 \\
Controller.)
\end{tabular}
(Note 1) The GM1 Controller does not support the flow control.

\subsection*{10.1 COM Port (General-purpose Communication)}

\section*{- COM.STOPBIT (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline ONESTOPBIT & 0 & 1 stop bit \\
\hline ONE5STOPBITS & 1 & 1.5 stop bit (Not available) \\
\hline TWOSTOPBITS & 2 & 2 stop bit \\
\hline
\end{tabular}

\section*{- COM.PARITY (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline EVEN & 0 & Even \\
\hline ODD & 1 & Odd \\
\hline NONE & 2 & None \\
\hline
\end{tabular}

\section*{- Program example}

\section*{Declaration section of ST program}
```

Open : COM.Open;
OpenParam : ARRAY [1..7] OF COM.PARAMETER := [
(udiParameterId := COM.CAA_Parameter_Constants.udiPort, udiValue := 2),
(udiParameterId := COM.CAA_Parameter_Constants.udiBaudrate, udiValue := 115200),
(udiParameterId := COM.CAA_Parameter_Constants.udiParity, udiValue := INT TO UDINT(COM.PARITY.ODD)),
(udiParameterId := COM.CAA_Parameter_Constants.udiStopBits, udiValue := INT_TO_UDINT(COM.STOPBIT.ONESTOPBIT)),
(udiParameterId := COM.CAA_Parameter_Constants.udiTimeout, udiValue := 0),
(udiParameterId := COM.CAA_Parameter_Constants.udiByteSize, udiValue := 8),
(udiParameterId := COM.CAA_Parameter_Constants.udiBinary, udiValue := 1)
];

```

\section*{Implementation section of ST program}
```

Open( xExecute:=TRUE , pParameterList:=ADR(OpenParam) , usiListLength:=SIZEOF (OpenParam)/SIZEOF (COM.PARAMETER) );

```

\subsection*{10.1.2 COM.Close (Close COM Port)}

This is a function block that closes the COM port.
■ Icon

Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xExecute & BOOL & Starts execution at the rising edge. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Output } & hCom & \begin{tabular}{l}
COM.CAA. \\
HANDLE
\end{tabular} & Handle of the COM port to be closed \\
\cline { 2 - 4 } & xBusy & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
COM.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
TRUE: An error has occurred within the FB. \\
Refer to "10.1.5 COM.ERROR (Error ID)".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.1.3 COM.Read (Read COM Port)}

This is a function block that reads data from the COM port.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 6 } & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\cline { 2 - 6 } & udiTimeOut & UDINT & Timeout time until the execution is stopped \((\mu \mathrm{s})\) \\
\cline { 2 - 5 } & hCom & \begin{tabular}{l}
COM.CAA. \\
HANDLE
\end{tabular} & Handle of the COM port \\
\cline { 2 - 5 } & pBuffer & CAA.PVOID & Pointer to the buffer that acquires data read from the COM port \\
\cline { 2 - 5 } & szBuffer & CAA.SIZE & Maximum byte of pBuffer \\
\hline & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & xAborted & BOOL & TRUE: Execution is stopped by the user. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
COM.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.1.5 COM.ERROR (Error ID)". \\
\end{tabular}
\end{tabular}

\subsection*{10.1 COM Port (General-purpose Communication)}

\subsection*{10.1.4 COM.Write (Write COM Port)}

This is a function block that writes data to the COM port.

\section*{- Icon}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 5 } & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\cline { 2 - 5 } & udiTimeOut & UDINT & Timeout time until the execution is stopped \((\mu s)\) \\
\cline { 2 - 5 } & hCom & \begin{tabular}{l}
COM.CAA. \\
HANDLE
\end{tabular} & Handle of the COM port \\
\cline { 2 - 5 } & pBuffer & CAA.PVOID & Pointer to the buffer of the data written to the COM port \\
\cline { 2 - 5 } & szSize & \begin{tabular}{l}
COM.CAA.S \\
Output
\end{tabular} & Data size (bytes) of the pBuffer to be written to the COM port \\
& xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & xAborted & BOOL & TRUE: Execution is stopped by the user. \\
\hline & eError & \begin{tabular}{l}
COM.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.1.5 COM.ERROR (Error ID)". \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.1.5 COM.ERROR (Error ID)}

This is an enumeration type error ID that is output when the COM port (general-purpose communication) function block is executed.

\section*{■ COM .ERROR (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline NO_ERROR & 0 & No error \\
\hline TIME_OUT & 5001 & Timeout error \\
\hline ABORT & 5002 & xAbort input enabled \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline HANDLE_INVALID & 5003 & Invalid handle \\
\hline ERROR_UNKNOWN & 5004 & Unknown error \\
\hline WRONG_PARAMETER & 5005 & Wrong parameter \\
\hline WRITE_INCOMPLETE & 5006 & Incomplete write \\
\hline
\end{tabular}

\subsection*{10.2 COM port (Modbus COM)}

This section describes the instructions that are used to perform ModbusRTU communication with the COM port.

\subsection*{10.2.1 IoDrvModbusComPort}

This is a function block that controls the Modbus_Master_COM_Port device.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xStop & BOOL & \begin{tabular}{l}
TRUE: Stops sending a new request to the slave. \\
FALSE: Continues the current request.
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
xResetCom \\
Port
\end{tabular} & BOOL & Closes the COM port at a rising edge. \\
\hline Output & \begin{tabular}{l}
uiNumberOf \\
Communicat \\
ingSlaves
\end{tabular} & UINT & Number of remote slaves under communication. \\
\cline { 2 - 4 } & \begin{tabular}{l}
xAllSlavesO \\
k
\end{tabular} & BOOL & \begin{tabular}{l}
TRUE: All slaves are communicating normally. \\
FALSE: An error has occurred in one of the slaves.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.2.2 loDrvModbus.ModbusChannel(Start Sending Modbus Command)}

This is a function block that sends the commands set in the Modbus Slave channel of the ModbusSlaveCOM_Port device.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{3}{*}{ Input } & xExecute & BOOL & Starts sending commands at the rising edge. \\
\cline { 2 - 5 } & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline & iChannellnd ex & INT & Channel number where commands to be sent are set \\
\hline I/O & slave & ModbusSlav eComPort & Handle of the ModbusSlaveComPort device \\
\hline \multirow[t]{5}{*}{Output} & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\hline & xDone & BOOL & TRUE: Processing is completed. \\
\hline & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline & xAborted & BOOL & TRUE: Execution is stopped by the user's xAbort input. \\
\hline & ModbusErro r & \[
\begin{aligned}
& \text { MB_ErrorCo } \\
& \text { des }
\end{aligned}
\] & \begin{tabular}{l}
An error code is output. \\
Refer to "10.5.5 loDrvModbus.MB_ErrorCodes (Error Codes)".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.2.3 IoDrvModbus.ModbusRequest (Modbus Request)}

This is a function block that processes the Modbus command specified by I/O without using the ModbusMasterComPort device.

\section*{- Supported commands}
- Command 1 (Read multi-point coil state)
- Command 2 (Read multi-point input state)
- Command 3 (Read multi-point holding register)
- Command 4 (Read multi-point input register)
- Command 5 (Write single-point coil)
- Command 6 (Write single-point holding register)
- Command 15 (Write multi-point coil)
- Command 16 (Write multi-point holding register)
- Command 23 (Read / write multi-point holding register)
- Icon

\section*{Parameter}
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{13}{*}{Input} & hComPort & RTS_IEC_H ANDLE & COM port handle acquired by COM. Open \\
\hline & xExecute & BOOL & Starts sending commands at the rising edge. \\
\hline & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\hline & \begin{tabular}{l}
usiSlaveAdd \\
r
\end{tabular} & USINT & Slave address 1 to 247 \\
\hline & uiFunctionC ode & UINT & Modbus function code \\
\hline & \begin{tabular}{l}
uiReadOffse \\
t
\end{tabular} & UINT & Read address offset (0 to 65535) \\
\hline & uiReadLen & UINT & Read length (1 to 125) \\
\hline & \begin{tabular}{l}
uiWriteOffse \\
t
\end{tabular} & UINT & Write address offset (0 to 65535) \\
\hline & uiWriteLen & UINT & Write length (1 to 121) \\
\hline & tTimeout & UINT & Timeout value (in ms units) \\
\hline & pWriteBuf & \begin{tabular}{l}
POINTER \\
TO BYTE
\end{tabular} & Pointer to the send buffer. \\
\hline & pReadBuf & \begin{tabular}{l}
POINTER \\
TO BYTE
\end{tabular} & Pointer to the receive buffer \\
\hline & transmission & MB_Transmi ssion & \begin{tabular}{l}
Transmission type (RTU / ASCII) \\
* Supports only RTU.
\end{tabular} \\
\hline \multirow[t]{5}{*}{Output} & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\hline & xDone & BOOL & TRUE: Processing is completed. \\
\hline & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline & xAborted & BOOL & TRUE: Execution is stopped by the user's xAbort input. \\
\hline & byModbusEr rorCode & BYTE & \begin{tabular}{l}
An error code is output. \\
Refer to "10.2.6 loDrvModbus.MB_ErrorCodes (Error Codes)".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.2.4 loDrvModbus.ModbusRequest 2 (Modbus Request 2)}

This is a function block that processes, like the ModbusRequest, the Modbus command specified by I/O without using the ModbusMasterComPort device. It is different from ModbusRequest in that the structure type is used to specify the Modbus command.
- Icon

\section*{- Parameter}
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{10}{*}{Input} & xExecute & BOOL & Starts sending commands at the rising edge. \\
\hline & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\hline & hComPort & RTS_IEC_H ANDLE & COM port handle acquired by COM.Open \\
\hline & \begin{tabular}{l}
usiSlaveAdd \\
r
\end{tabular} & USINT & Slave address 1 to 247 \\
\hline & modbusCo mmand & ModbusCo mmnad & Modbus command \\
\hline & tResponseTi meout & TIME & Timeout (in ms units) of the response for a request \\
\hline & uiSendTime out & UINT & Transmission timeout \\
\hline & pSendData & UINT & Pointer to the send data \\
\hline & pRecvData & UINT & Pointer to the receive data \\
\hline & transmission & MB_Transmi ssion & \begin{tabular}{l}
Transmission type (RTU / ASCII) \\
* Supports only RTU.
\end{tabular} \\
\hline \multirow[t]{6}{*}{Output} & xDone & BOOL & TRUE: Processing is completed. \\
\hline & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\hline & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline & xAborted & BOOL & TRUE: Execution is stopped by the user's xAbort input. \\
\hline & uiDataLengt
h & BYTE & Received data length (byte) \\
\hline & byModbusEr ror & \[
\begin{array}{|l}
\text { MB_ErrorCo } \\
\text { des }
\end{array}
\] & \begin{tabular}{l}
An error code is output. \\
Refer to "10.2.6 loDrvModbus.MB_ErrorCodes (Error Codes)".
\end{tabular} \\
\hline
\end{tabular}

\section*{- ModbusCommand (Structure)}
\begin{tabular}{|l|l|l|}
\hline Name & Type & Description \\
\hline uiFunctionCode & UINT & Modbus command code \\
\hline uiReadOffset & UINT & Read address 0 to 65535 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Name & Type & Description \\
\hline uiReadLen & UINT & \begin{tabular}{l}
Range in the number of read instances \\
varies depending on commands.
\end{tabular} \\
\hline uiWriteOffset & UINT & Write address 0 to 65535 \\
\hline uiWriteLen & UINT & \begin{tabular}{l}
Range in the number of write instances \\
varies depending on commands.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.2.5 IoDrvModbus.ModbusSlaveComPort}

This is a function block that controls the Modbus_Slave_COM_Port device.
■ Icon

- Parameter
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{4}{*}{Input} & xTrigger & BOOL & Sends all the commands of the Modbus channel at the rising edge. \\
\hline & xReset & BOOL & Resets xError and byModbusError and resumes communication. \\
\hline & xAcknowled ge & BOOL & Resumes communication without resetting xError and byModbusError. \\
\hline & xDolnit & BOOL & TRUE: Sends a slave initialization command when communication is resumed. \\
\hline \multirow[t]{6}{*}{Output} & xInitDone & BOOL & TRUE: Modbus slave initialization command is fully completed. \\
\hline & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\hline & xDone & BOOL & TRUE: Processing is completed. \\
\hline & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline & byModbusEr ror & \[
\begin{aligned}
& \text { MB_ErrorCo } \\
& \text { des }
\end{aligned}
\] & \begin{tabular}{l}
An error code is output. \\
Refer to "10.2.6 loDrvModbus.MB_ErrorCodes (Error Codes)".
\end{tabular} \\
\hline & iChannellnd ex & INT & Channel index \\
\hline
\end{tabular}

\subsection*{10.2.6 loDrvModbus.MB_ErrorCodes (Error Codes)}

This is an enumeration type error code that is output when the function block for Modbus communication instruction that uses the COM port is executed.

\section*{■ loDrvModbus.MB_ErrorCodes (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline RESPONSE_SUCCESS & \(16 \# 0\) & Succeeded \\
\hline ILLEGAL_FUNCTION & \(16 \# 1\) & Function code not supported by the slave \\
\hline ILLEGAL_DATA_ADDRESS & \(16 \# 2\) & Register offset not supported by the slave \\
\hline ILLEGAL_DATA_VALUE & \(16 \# 3\) & Illegal data writing \\
\hline SLAVE_DEVICE_FAILURE & \(16 \# 4\) & Non-recoverable error \\
\hline ACKNOWLEDGE & \(16 \# 5\) & Start operation \\
\hline SLAVE_DEVICE_BUSY & \(16 \# 6\) & During operation \\
\hline MEMORY_PARITY_ERROR & \(16 \# 8\) & Memory parity error \\
\hline GATEWAY_PATH_UNAVAILABLE & \(16 \# A\) & Gateway path unavailable \\
\hline \begin{tabular}{l}
GATEWAY_DEVICE_FAILED_TO_RES \\
POND
\end{tabular} & \(16 \# B\) & Gateway device failed to respond \\
\hline RESPONSE_TIMEOUT & \(16 \# A 1\) & Timeout \\
\hline RESPONSE_CRC_FAIL & \(16 \# A 2\) & CRC error \\
\hline RESPONSE_WRONG_SLAVE & \(16 \# A 3\) & Wrong response \\
\hline \begin{tabular}{l}
RESPONSE_WRONG_FUNCTIONCO \\
DE
\end{tabular} & \(16 \# A 4\) & Wrong function code in the response \\
\hline REQUEST_FAILED_TO_SEND & \(16 \# A 5 ~\) & Request not sent \\
\hline RESPONSE_INVALID_DATA & \(16 \# A 6 ~\) & Invalid response data \\
\hline RESPONSE_INVALID_PROTOCOL & \(16 \# A 7\) & Invalid response protocol \\
\hline RESPONSE_INVALID_HEADER & \(16 \# A 8\) & Invalid response header \\
\hline UNDEFINED & \(16 \# F F\) & Undefined \\
\hline
\end{tabular}

\subsection*{10.3 LAN port (IoDrvEthernet)}

This section describes the library functions that are used for the network interface to perform communication with the LAN port.

\subsection*{10.3.1 loDrvEthernet}

This is a function block that acquires the status of the LANPort device.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Output & eState & \begin{tabular}{l}
EthernetStat \\
e
\end{tabular} & \begin{tabular}{l}
Ethernet state \\
Refer to "EthernetState (Enumeration type)".
\end{tabular} \\
\hline
\end{tabular}

\section*{EthernetState (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline NOT_CONFIGURED & 0 & Before configuration \\
\hline CONFIGURED & 1 & After configuration \\
\hline DISCONNECTED & 2 & Disconnected \\
\hline RUNNING & 3 & Being executed \\
\hline ERROR & 4 & An error has occurred. \\
\hline SET_IP_ERROR & 5 & An IP error has occurred. \\
\hline
\end{tabular}

\subsection*{10.3.2 loDrvEthernet.IPARRAY_TO_INADDR (Array Type to Union Type)}

This is a function that converts an array type IP address to an INADDR (union type).
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & \begin{tabular}{l}
abyIPAddres \\
s
\end{tabular} & \begin{tabular}{l}
ARRY[0..3] \\
OF BYTE
\end{tabular} & IP address array \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Output & \begin{tabular}{l}
IPARRAY_T
\end{tabular} & \begin{tabular}{l}
SysSocket.I \\
\\
\end{tabular} O_INADDR \(^{\text {NADDR }}\) & Union type IP address \\
\hline
\end{tabular}

\subsection*{10.3.3 loDrvEthernet.IPARRAY_TO_IPSTRING (Array Type to Character String Type)}

This is a function that converts an array type IP address to a character string type.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & \begin{tabular}{l}
abylPAddres \\
s
\end{tabular} & \begin{tabular}{l}
ARRY[0..3] \\
OF BYTE
\end{tabular} & IP address array \\
\hline Output & \begin{tabular}{l}
IPARRAY_T \\
O_STRING \(^{\prime}\)
\end{tabular} & STRING & Character string type IP address \\
\hline
\end{tabular}

\subsection*{10.3.4 IoDrvEthernet.IPARRAY_TO_UDINT (Array Type to UDINT Type)}

This is a function that converts an array type IP address to a UDINT type.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Sc \\
op \\
e
\end{tabular} & Name & Type & Description \\
\hline \begin{tabular}{l}
Inp \\
ut
\end{tabular} & abylPAddress & \begin{tabular}{l}
ARRY[0..3] OF \\
BYTE
\end{tabular} & IP address array \\
\hline \begin{tabular}{l}
Out \\
put
\end{tabular} & IPARRAY_TO_UDINT & UDINT & UDINT type IP address \\
\hline
\end{tabular}

\subsection*{10.3.5 loDrvEthernet.IPSTRING_TO_UDINT (Character String Type to UDINT Type)}

This is a function that converts a character string type IP address to a UDINT type.
■ Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & \begin{tabular}{l}
abyIPAddres \\
s
\end{tabular} & STRING & Character string type IP address \\
\hline Output & \begin{tabular}{l}
IPARRAY_T \\
O_UDINT \(^{-}\)
\end{tabular} & UDINT & UDINT type IP address \\
\hline
\end{tabular}

\subsection*{10.3.6 loDrvEthernet.UDINT_TO_IPARRAY (UDINT Type to Array Type)}

This is a function that converts a UDINT type IP address to an array type.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & \begin{tabular}{l}
abyIPAddres \\
s
\end{tabular} & UDINT & UDINT type IP address \\
\hline Output & \begin{tabular}{l}
UDINT_TO_-_ \\
IPARRĀY
\end{tabular} & \begin{tabular}{l}
ARRY[0..3] \\
OF BYTE
\end{tabular} & IP address array \\
\hline
\end{tabular}

\subsection*{10.3.7 IoDrvEthernet.UDINT_TO_IPSTRING (UDINT Type to Character String Type)}

This is a function that converts a UDINT type IP address to an array type.
- Icon
-udiIPAddress UDIVT \begin{tabular}{|r|r|}
\hline UDINT_TO_IPSTRING \\
STRING UDINT_TO_IPSTRING
\end{tabular}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & \begin{tabular}{l}
abyIPAddres \\
s
\end{tabular} & UDINT & UDINT type IP address \\
\hline Output & \begin{tabular}{l}
UDINT_TO__ \\
STRING
\end{tabular} & STRING & Character string type IP address \\
\hline
\end{tabular}

\subsection*{10.4 LAN Port (General-purpose Communication)}

This section describes the library functions that are used to perform general-purpose communication with the LAN port using the TCP or UDP protocol.

\subsection*{10.4.1 NBS.TCP_Client (Connect to TCP Client)}

This is a function block that connects to the TCP/IP client.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xEnable & BOOL & TRUE: Active \\
\cline { 2 - 5 } & udiTimeOut & UDINT & \begin{tabular}{l}
Connection timeout (us) \\
No timeout when set to 0.
\end{tabular} \\
\cline { 2 - 5 } & ipAddr & \begin{tabular}{l}
NBS.IP \\
ADDR
\end{tabular} & Server IP address (character string type) \\
\cline { 2 - 5 } & Uutput & uiPort & UINT \\
& xDone & BOOL & Server port No. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
NBS.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Connection result \\
Refer to "10.4.8 NBS.ERROR (Error Code)".
\end{tabular} \\
\hline & xActive & BOOL & TRUE: Connection is established. \\
\cline { 2 - 5 } & hConnection & \begin{tabular}{l}
CAA. HAND \\
LE
\end{tabular} & Connection handle (Valid when xActive = TRUE) \\
\hline
\end{tabular}

\subsection*{10.4.2 NBS.TCP_Connection (Connect TCP)}

This is a function block that establishes the connection of the client connecting to the connection port opened by TCP_Server.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{6}{*}{ Input } & xEnable & BOOL & TRUE: Active \\
\cline { 2 - 5 } & hServer & \begin{tabular}{l}
CAA.HAND \\
LE
\end{tabular} & Connection port handle acquired by TCP_Server \\
\hline \multirow{5}{*}{} & xDone & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
NBS.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Connection result \\
Refer to "10.4.8 NBS.ERROR (Error Code)".
\end{tabular} \\
\cline { 2 - 5 } & xActive & BOOL & TRUE: Connection is established. (Note 1) \\
\cline { 2 - 5 } & hConnection & \begin{tabular}{l}
CAA.HAND \\
LE
\end{tabular} & Connection handle (Valid when xActive = TRUE) \\
\hline
\end{tabular}
(Note 1) To detect a disconnection from the client after the line is connected, it is necessary to periodically call TCP_Read.

\section*{1 Info.}
- When multiple clients are connected simultaneously to the same port, multiple TCP_Connection instances are created.
- The hServer handle acquired by one TCP_Server is set to the multiple TCP_Connection instances.

\subsection*{10.4.3 NBS.TCP_Read (Receive TCP Data)}

This is a function block that acquires data received by the connection port that is established by TCP_Connection.

\section*{Icon}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xEnable & BOOL & TRUE: Active \\
\cline { 2 - 5 } & hConnection & \begin{tabular}{l}
CAA.HAND \\
LE
\end{tabular} & Connection port handle acquired by TCP_Connection \\
\cline { 2 - 5 } & szSize & CAA.SIZE & Received buffer size (byte) \\
\cline { 2 - 5 } & pData & CAA.PVOID & Pointer to the receive buffer \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
NBS.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Connection result \\
Refer to "10.4.8 NBS.ERROR (Error Code)". \\
\end{tabular} \\
\cline { 2 - 5 } & xReady & BOOL & TRUE: Data is received. \\
\cline { 2 - 5 } & szCount & CAA.SIZE & Received data size (byte) \\
\hline
\end{tabular}

\subsection*{10.4.4 NBS.TCP_Server (Connect TCP Server)}

This is a function block that opens the specified port as a TCP/IP connection port.
■ Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xEnable & BOOL & TRUE: Active \\
\cline { 2 - 5 } & ipAddr & \begin{tabular}{l}
NBS.IP_AD \\
DR
\end{tabular} & Home IP address (character string), LANPort1 or LANPort2 IP address \\
\cline { 2 - 5 } & uiPort & UINT & Home waiting port number \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Output } & xDone & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 4 } & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
NBS.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Connection result \\
Refer to "10.4.8 NBS.ERROR (Error Code)".
\end{tabular} \\
\cline { 2 - 5 } & hServer & \begin{tabular}{l}
CAA.HAND \\
LE
\end{tabular} & Connection handle used by TCP_Connection \\
\hline
\end{tabular}

\subsection*{10.4.5 NBS.TCP_Write (Send TCP Data)}

This is a function block that sends data to the connection port that is established by TCP_Connection.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & \begin{tabular}{l}
TRUE: Send started (edge) \\
FALSE: Processing ended (edge)
\end{tabular} \\
\cline { 2 - 5 } & udiTimeOut & UDINT & Timeout (us) \\
\cline { 2 - 5 } & hConnection & \begin{tabular}{l}
CAA.HAND \\
LE
\end{tabular} & Connection port handle acquired by TCP_Connection \\
\cline { 2 - 5 } & SzSize & CAA.SIZE & Send data size (byte) \\
\cline { 2 - 5 } & pData & CAA.PVOID & Pointer to the send data buffer. \\
\hline & xDone & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
NBS.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Connection result \\
Refer to "10.4.8 NBS.ERROR (Error Code)".
\end{tabular} \\
& & & \\
\hline
\end{tabular}

\subsection*{10.4.6 NBS.UDP_Peer (Open UDP Port)}

This is a function block that opens the UDP/IP port.

\section*{Icon}

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{6}{*}{ Input } & xEnable & BOOL & \begin{tabular}{l}
TRUE: Active \\
FALSE: Stop (xDone, xBusy, and xError are reset.)
\end{tabular} \\
\cline { 2 - 5 } & ipAddr & \begin{tabular}{l}
NBS.IP_AD \\
DR
\end{tabular} & Home IP address (character string), LANPort1 or LANPort2 IP address \\
\cline { 2 - 5 } & uiPort & UINT & Home port number; Not possible to set to 0 \\
\cline { 2 - 5 } & ipMultiCast & \begin{tabular}{l}
NBS.IP_AD \\
DR
\end{tabular} & \begin{tabular}{l}
Multicast address \\
("255.255.255.255"=> INADDR_NONE)
\end{tabular} \\
\hline \multirow{5}{*}{ Output } & xDone & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
NBS.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Connection result \\
Refer to "10.4.8 NBS.ERROR (Error Code)".
\end{tabular} \\
& xActive & BOOL & TRUE: Connection is established. \\
\cline { 2 - 5 } & hPeer & \begin{tabular}{l}
CAA. HAND \\
LE
\end{tabular} & Connection handle (Valid when xActive = TRUE) \\
& & & \\
\hline
\end{tabular}

\subsection*{10.4.7 NBS.UDP_Receive (Receive UDP Data)}

This is a function block that receives data to the connection handle acquired by UDP_Peer.
■ Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xEnable & BOOL & \begin{tabular}{l}
TRUE: Active \\
FALSE: Stop (xDone, xBusy, and xError are reset.)
\end{tabular} \\
\cline { 2 - 7 } & hPeer & \begin{tabular}{l}
CAA.HAND \\
LE
\end{tabular} & Connection handle acquired by UDP_Peer \\
\cline { 2 - 6 } & szSize & CAA.SIZE & Receive data buffer size (byte) \\
\cline { 2 - 5 } & pData & CAA.PVOID & Pointer to the receive data buffer \\
\hline & xDone & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
NBS.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Connection result \\
Refer to "10.4.8 NBS.ERROR (Error Code)".
\end{tabular} \\
\cline { 2 - 5 } & xReady & BOOL & TRUE: Data acquired, FALSE: No received data \\
\hline & ipFrom & \begin{tabular}{l}
NBS.IP_AD \\
DR
\end{tabular} & Data sending source IP address \\
\cline { 2 - 4 } & uiPortFrom & UINT & Data sending source port No. \\
\cline { 2 - 5 } & szCount & CAA.SIZE & Received data size (byte) \\
\hline
\end{tabular}
(Note 1) If the szSize (receive data buffer size) is smaller than the received data size, only the data equivalent to the size specified by szSize is stored in pData and the data exceeding the size specified by szSize is discarded.

\subsection*{10.4.8 NBS.ERROR (Error Code)}

This is an enumeration type error code that is output when the function block for communication instruction that uses the LAN port is executed.
- NBS.ERROR (Enumeration type)
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline NO_ERROR & 0 & No error is occurring. \\
\hline FIRST_ERROR & 6000 & Reserved \\
\hline TIME_OUT & 6001 & Reserved \\
\hline INVALID_ADDR & 6002 & IP address is invalid. \\
\hline INVALID_HANDLE & 6003 & Handle is invalid. \\
\hline INVALID_DATAPOINTER & 6004 & Data pointer is invalid. \\
\hline INVALID_DATASIZE & 6005 & Data size is invalid. \\
\hline UDP_RECEIVE_ERROR & 6006 & UDP datagram cannot be received. \\
\hline UDP_SEND_ERROR & 6007 & UDP datagram cannot be sent. \\
\hline UDP_SEND_NOT_COMPLETE & 6008 & Reserved \\
\hline UDP_OPEN_ERROR & 6009 & Port cannot be opened. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline UDP_CLOSE_ERROR & 6010 & Port cannot be released. \\
\hline TCP_SEND_ERROR & 6011 & TCP message cannot be sent. \\
\hline TCP_RECEIVE_ERROR & 6012 & TCP message cannot be received. \\
\hline TCP_OPEN_ERROR & 6013 & TCP port cannot be created. \\
\hline TCP_CONNECT_ERROR & 6014 & TCP connection cannot be established. \\
\hline TCP_CLOSE_ERROR & 6015 & TCP port cannot be released. \\
\hline TCP_SERVER_ERROR & 6016 & Reserved \\
\hline WRONG_PARAMETER & 6017 & The parameter contains an invalid value. \\
\hline ERROR_UNKNOWN & 6018 & Reserved \\
\hline TCP_NO_CONNECTION & 6019 & There is no TCP connection. \\
\hline IOCTL_ERROR & 6020 & Internal error (IOCTL is not supported.) \\
\hline FIRST_MF & 6050 & Reserved \\
\hline LAST_ERROR & 6099 & Reserved \\
\hline
\end{tabular}

\subsection*{10.4.9 NBS.UDP_Send (Send UDP Data)}

This is a function block that sends data to the connection handle acquired by UDP_Peer.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & \begin{tabular}{l}
TRUE: Send started (edge) \\
FALSE: Processing ended (edge)
\end{tabular} \\
\cline { 2 - 5 } & udiTimeOut & UDINT & Timeout (us) \\
\cline { 2 - 5 } & hPeer & \begin{tabular}{l}
CAA.HAND \\
LE
\end{tabular} & Connection port handle acquired by UDP_Peer \\
\cline { 2 - 5 } & ipAddr & \begin{tabular}{l}
NBS.IP_AD \\
DR
\end{tabular} & Destination IP address \\
\cline { 2 - 4 } & uiPort & UINT & Destination port No. \\
\cline { 2 - 4 } & szSize & CAA.SIZE & Send data size (byte) \\
\cline { 2 - 4 } & pData & CAA.PVOID & Pointer to the send data buffer. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 4 } & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\cline { 2 - 4 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 4 } & eError & \begin{tabular}{l}
NBS.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Connection result \\
Refer to "10.4.8 NBS.ERROR (Error Code)".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.5 LAN Port (Modbus TCP)}

\subsection*{10.5 LAN Port (Modbus TCP)}

This section describes the library functions that are used to perform ModbusTCP communication with the LAN port.
It is created from Modbus master TCP available in the device tree.

\subsection*{10.5.1 loDrvModbusTCP}

This is a function block that controls the Modbus_TCP_Master device.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline I/O & xStop & BOOL & TRUE: Stops sending commands to the slave. \\
\hline \multirow{3}{*}{ Output } & xSlaveError & BOOL & There is an error in the slave function \\
\cline { 2 - 4 } & \begin{tabular}{l}
uiConnectes \\
Slaves
\end{tabular} & UINT & Number of slaves connected via TCP/IP \\
\hline
\end{tabular}

\subsection*{10.5.2 loDrvModbusTCP.ModbusChannel (Start Sending Modbus Command)}

This is a function block that sends the commands set in the Modbus Slave channel of the ModbusTCP_Slave device.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xExecute & BOOL & Starts sending commands at the rising edge. \\
\cline { 2 - 4 } & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\cline { 2 - 4 } & \begin{tabular}{l}
iChannellnd \\
ex
\end{tabular} & INT & Channel number where commands to be sent are set \\
\hline \multirow{2}{*}{ I/O } & slave & \begin{tabular}{l}
ModbusTCP \\
SlaveBase
\end{tabular} & \begin{tabular}{l}
Handle of the Modbus_TCP_Slave device \\
Output
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Output } & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\cline { 2 - 5 } & xDone & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 4 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & xAborted & BOOL & TRUE: Execution is stopped by the user's xAbort input \\
\cline { 2 - 5 } & \begin{tabular}{l}
ModbusErro \\
r
\end{tabular} & \begin{tabular}{l}
MB_ErrorCo \\
des
\end{tabular} & \begin{tabular}{l}
An error code is output. \\
Refer to "10.5.5 loDrvModbus.MB_ErrorCodes (Error Codes)".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.5.3 loDrvModbusTCP.ModbusRequest (Modbus Request)}

This is a function block that processes the Modbus command specified by I/O without using the Modbus_TCP_Slave device.

\section*{- Supported commands}
- Command 1 (Read multi-point coil state)
- Command 2 (Read multi-point input state)
- Command 3 (Read multi-point holding register)
- Command 4 (Read multi-point input register)
- Command 5 (Write single-point coil)
- Command 6 (Write single-point holding register)
- Command 15 (Write multi-point coil)
- Command 16 (Write multi-point holding register)
- Command 23 (Read / write multi-point holding register)
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & slave & \begin{tabular}{l}
ModbusTCP \\
Slave
\end{tabular} & Handle of the Modbus_TCP_Slave device \\
\cline { 2 - 4 } & xExecute & BOOL & Starts sending commands at the rising edge. \\
\cline { 2 - 5 } & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\cline { 2 - 5 } & usiUnitID & USINT & Slave address 1 to 247 \\
\cline { 2 - 4 } & \begin{tabular}{l}
ModbusCo \\
mmand
\end{tabular} & \begin{tabular}{l}
ModbusCo \\
mmnand
\end{tabular} & Structure that stores parameters of the commands issued. \\
\hline
\end{tabular}

\subsection*{10.5 LAN Port (Modbus TCP)}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{} & pSendData & \begin{tabular}{l}
POINTER \\
TO BYTE
\end{tabular} & Pointer to the send data buffer. \\
\cline { 2 - 4 } & pRecvData & \begin{tabular}{l}
POINTER \\
TO BYTE
\end{tabular} & Pointer to the receive data buffer \\
\hline \multirow{4}{*}{ Output } & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\cline { 2 - 5 } & xDone & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & xAborted & BOOL & TRUE: Execution is stopped by the user's xAbort input \\
\cline { 2 - 5 } & \begin{tabular}{l}
ModbusErro \\
r
\end{tabular} & BYTE & \begin{tabular}{l}
An error code is output. \\
Refer to "10.5.5 loDrvModbus.MB_ErrorCodes (Error Codes)". \\
Also possible to convert the type and use as enumeration type \\
MB_ErrorCodes.
\end{tabular} \\
\hline
\end{tabular}

\section*{- ModbusCommand (Structure)}
\begin{tabular}{|l|l|l|}
\hline Name & Type & Description \\
\hline uiFunctionCode & UINT & Modbus command code \\
\hline uiReadOffset & UINT & Read address 0 to 65535 \\
\hline uiReadLen & UINT & \begin{tabular}{l}
Range in the number of read instances \\
varies depending on commands.
\end{tabular} \\
\hline uiWriteOffset & UINT & Write address 0 to 65535 \\
\hline uiWriteLen & UINT & \begin{tabular}{l}
Range in the number of write instances \\
varies depending on commands.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.5.4 loDrvModbusTCPSIave}

This is a function block that controls the Modbus_TCP_Slave device.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & \begin{tabular}{l}
xConfirmErr \\
or
\end{tabular} & BOOL & Resets xError and byModbusError and resumes communication. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{6}{*}{ Output } & xDolnit & BOOL & \begin{tabular}{l}
TRUE: Sends a slave initialization command when communication is \\
resumed.
\end{tabular} \\
\cline { 2 - 6 } & xDone & BOOL & TRUE: Processing is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Processing of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 6 } & \begin{tabular}{l}
byModbusEr \\
ror
\end{tabular} & \begin{tabular}{l}
MB_ErrorCo \\
des
\end{tabular} & \begin{tabular}{l}
An error code is output. \\
Refer to "10.5.5 loDrvModbus.MB_ErrorCodes (Error Codes)".
\end{tabular} \\
\cline { 2 - 5 } & \begin{tabular}{l}
ComSetting \\
s
\end{tabular} & \begin{tabular}{l}
ModbusTCP \\
ComSetting \\
s
\end{tabular} & \begin{tabular}{l}
IP address and port number registered in the Modbus_TCP_Slave \\
device.
\end{tabular} \\
\cline { 2 - 5 } & ComState & \begin{tabular}{l}
ModbusTCP \\
ComState
\end{tabular} & Communication status \\
\hline & \begin{tabular}{l}
Channellnd \\
ex
\end{tabular} & INT & Channel number \\
\hline
\end{tabular}

\subsection*{10.5.5 IoDrvModbus.MB_ErrorCodes (Error Codes)}

This is an enumeration type error code that is output when the function block for Modbus communication instruction that uses the COM port is executed.

\section*{■ loDrvModbus.MB_ErrorCodes (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline RESPONSE_SUCCESS & \(16 \# 0\) & Succeeded \\
\hline ILLEGAL_FUNCTION & \(16 \# 1\) & Function code not supported by the slave \\
\hline ILLEGAL_DATA_ADDRESS & \(16 \# 2\) & Register offset not supported by the slave \\
\hline ILLEGAL_DATA_VALUE & \(16 \# 3\) & Illegal data writing \\
\hline SLAVE_DEVICE_FAILURE & \(16 \# 4\) & Non-recoverable error \\
\hline ACKNOWLEDGE & \(16 \# 5\) & Start operation \\
\hline SLAVE_DEVICE_BUSY & \(16 \# 6\) & During operation \\
\hline MEMORY_PARITY_ERROR & \(16 \# 8\) & Memory parity error \\
\hline GATEWAY_PATH_UNAVAILABLE & \(16 \# A\) & Gateway path unavailable \\
\hline \begin{tabular}{l}
GATEWAY_DEVICE_FAILED_TO_RES \\
POND
\end{tabular} & \(16 \# B\) & Gateway device failed to respond \\
\hline RESPONSE_TIMEOUT & \(16 \# A 1\) & Timeout \\
\hline RESPONSE_CRC_FAIL & \(16 \# A 2\) & CRC error \\
\hline RESPONSE_WRONG_SLAVE & \(16 \# A 3\) & Wrong response \\
\hline \begin{tabular}{l}
RESPONSE_WRONG_FUNCTIONCO \\
DE
\end{tabular} & \(16 \# A 4\) & Wrong function code in the response \\
\hline REQUEST_FAILED_TO_SEND & \(16 \# A 5\) & Request not sent \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline RESPONSE_INVALID_DATA & \(16 \#\) A6 & Invalid response data \\
\hline RESPONSE_INVALID_PROTOCOL & \(16 \# A 7\) & Invalid response protocol \\
\hline RESPONSE_INVALID_HEADER & \(16 \#\) A8 & Invalid response header \\
\hline UNDEFINED & \(16 \# F F\) & Undefined \\
\hline
\end{tabular}

\subsection*{10.6 LAN Port (EtherNet/IP)}

This section describes the instructions that are used to control EtherNet/IP scanner and adapter functions using the SMC.

\subsection*{10.6.1 loDrvEtherNetIP (EtherNet/IP Scanner Device)}

This is a function block (FB) that controls the EtherNet/IP scanner device.
This function block is automatically generated by adding an EtherNet/IP scanner device and the name of the device that is added is used as the instance name.

\section*{Example}

Adding an EtherNet/IP scanner device named "EtherNet_IP_Scanner" to LANPort2

- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xReset & BOOL & Resets the scanner function at the rising edge \\
\hline \multirow{3}{*}{ Output } & eState & \begin{tabular}{l}
ScannerStat \\
e
\end{tabular} & EtherNet/IP scanner device state \\
\cline { 2 - 5 } & eError & ERROR & Error state code of EtherNet/IP scanner \\
\hline
\end{tabular}

\section*{- ScannerState (EtherNet/IP scanner device state)}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline INITIALIZING & \begin{tabular}{l}
The device is setting up a CIP object. It is continuing \\
IP_CONFIG.
\end{tabular} \\
\hline IP_CONFIG & \begin{tabular}{l}
The device creates an IP configuration for Ethernet interface and \\
waits until it enters a RUNNING state.
\end{tabular} \\
\hline UDP_CONFIG & The device opens the socket for UDP default port 2222. \\
\hline ENCAPSULATION_CONFIG & \begin{tabular}{l}
The encapsulation server for the scanner is started via the \\
default TCP port (44818).
\end{tabular} \\
\hline ADAPTER_CONFIG & \begin{tabular}{l}
The device is in an empty state. It is continuing \\
OPEN_CONNECTIONS.
\end{tabular} \\
\hline OPEN_CONNECTIONS & \begin{tabular}{l}
The CIP ID status is set to "configured" and the RUNNING state \\
continues.
\end{tabular} \\
\hline RUNNING & \begin{tabular}{l}
The device opens a connection to the adapter and processes \\
explicit messages with I/O communication.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.6 LAN Port (EtherNet/IP)}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline DIAGNOSTIC_AVAILABLE & There are diagnostic messages from the configurator or editor. \\
\hline BUS_ERROR & The UDP or TCP port failed to open. \\
\hline RESET & xReset for the CIP ID object was received. \\
\hline ERROR & \begin{tabular}{l}
When the network interface is in a continued state, the scanner \\
enters the INITIALIZING state.
\end{tabular} \\
\hline
\end{tabular}
- ERROR (Error state code of EtherNet/IP scanner)
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline NO_ERROR & No error is occurring. \\
\hline INVALID_COMMAND & The command is invalid. \\
\hline OUT_OF_MEMORY & A memory shortage occurred. \\
\hline INVALID_DATA & The data is invalid. \\
\hline INVALID_SESSION_HANDLE & The session handle is invalid. \\
\hline INVALID_LENGTH & The data length is invalid. \\
\hline UNSUPPORTED_PROTOCOL_VERSION & The protocol version is unsupported. \\
\hline NBS_ERROR & An NBS error occurred. \\
\hline NBS_RCV_ERROR & Data cannot be received via NBS. \\
\hline NBS_SND_ERROR & Data cannot be sent via NBS. \\
\hline ENCAPSULATION_ERROR & An encapsulation error occurred. \\
\hline TCPIP_CONFIG_ERROR & TCP IP settings are incorrect. \\
\hline UDP_CONFIG_ERROR & UDP settings are incorrect. \\
\hline UDP_RECV_ERROR & UDP datagrams cannot be received. \\
\hline UDP_SEND_ERROR & UDP datagrams cannot be sent. \\
\hline UDP_CLOSE_ERROR & UDP ports cannot be released. \\
\hline NULL_POINTER & This is a null pointer. \\
\hline DEVICE_STATE_ERROR & An error is occurring on the device. \\
\hline RECONFIGURATION_FAILED & Reconfiguration failed. \\
\hline PERFORMANCE_MONITOR_DISABLED & The performance monitor is disabled. \\
\hline INVALID_MEASURING_POINT & Measuring points are invalid. \\
\hline IP_CONFIG_ERROR & IP settings are faulty. \\
\hline
\end{tabular}

\subsection*{10.6.2 RemoteAdapter (Remote Adapter Device)}

This is a function block (FB) for the remote adapter device linked to the EtherNet/IP scanner device.

This function block is automatically generated by adding an EtherNet/IP remote adapter device and the name of the device that is added is used as the instance name.

\section*{Example}

Adding a remote adapter device named "FP7CPU_UNIT_AFP7CPS41ES" to EtherNet_IP_Scanner

- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xReset & BOOL & Resets the remote adapter function at the rising edge \\
\cline { 2 - 4 } & \begin{tabular}{l}
xAcknowled \\
ge
\end{tabular} & BOOL & Acknowledges the diagnostic information at the rising edge \\
\hline \multirow{4}{*}{ Output } & eState & \begin{tabular}{l}
Adapter \\
State
\end{tabular} & Remote adapter state \\
\cline { 2 - 5 } & \begin{tabular}{l}
xDiagnostic \\
Available
\end{tabular} & BOOL & The output remains TRUE when there is diagnostic information \\
\cline { 2 - 4 } & sDiagString & STRING & Diagnosis string \\
\hline
\end{tabular}

\section*{- AdapterState (Adapter device state)}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline DISABLED & The device is disabled in device tree \\
\hline NOT_CONFIGURED & Parameters are being loaded \\
\hline IP_CONFIG & \begin{tabular}{l}
The device has configured a TCP object and is waiting for an \\
Ethernet node
\end{tabular} \\
\hline ENCAPSULATION_CONFIG & Encapsulation is being configured \\
\hline LIST_SERVICES & List services are being executed \\
\hline REGISTER_SESSION & Register session is in progress \\
\hline PARAMETER_CONFIG & Parameters are being configured \\
\hline CONFIGURED & The device is in configuration completion state \\
\hline RUNNING & The device is in running state \\
\hline IDLE & The device is in idle state \\
\hline RESET & Reset service is being executed \\
\hline RESET_SERVICE & Connectivity check is in progress \\
\hline CONNECTIVITY_CHECK & Bus error is occurring \\
\hline BUS_ERROR & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline ERROR & Error is occurring \\
\hline
\end{tabular}

\subsection*{10.6.3 loDrvEtherNetIPAdapter (EtherNet/IP adapter device)}

This is a function block (FB) that controls the EtherNet/IP adapter device.
This function block is automatically generated by adding an EtherNet/IP adapter device and the name of the device that is added is used as the instance name.

\section*{Example}

Adding an EtherNet/IP adapter device named "EtherNet_IP_Adapter" to LANPort2
\begin{tabular}{rl|}
\hline\(-\pi\) LANPort2 \\
\(=\) & EtherNet_IP_Adapter \\
& \\
&
\end{tabular}
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xReset & BOOL & Resets the adapter function at the rising edge \\
\hline \multirow{3}{*}{ Output } & eState & \begin{tabular}{l}
ADAPTERS \\
TATE
\end{tabular} & EtherNet/IP adapter device state \\
\cline { 2 - 4 } & eError & ERROR & Error state code of EtherNet/IP adapter \\
\hline
\end{tabular}

\section*{- ADAPTERSTATE (EtherNet/IP adapter device state)}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline UPDATE_CONFIGURATION & Startup phase \\
\hline NOT_CONFIGURED & Parameters are being loaded \\
\hline DISABLED & The device is disabled in device tree \\
\hline CONFIGURED & A CIP object has been created \\
\hline IP_CONFIG & \begin{tabular}{l}
The device has configured a TCP object and is waiting for an \\
Ethernet node
\end{tabular} \\
\hline IMPLICITMESSAGING_CONFIG & UDP port has been opened \\
\hline EXPLICITMESSAGING_CONFIG & TCP port has been opened \\
\hline NO_CONNECTION & \begin{tabular}{l}
The protocol stack has been started, but the scanner is \\
unconnected.
\end{tabular} \\
\hline RUNNING & The protocol stack is running, and the scanner is connected. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline STOPPED & \begin{tabular}{l}
The Ethernet node is inactive, and the device is waiting for the \\
Ethernet node to return.
\end{tabular} \\
\hline RESET & UDP and TCP connection is closing. \\
\hline SCANNER_EXTENSION & \begin{tabular}{l}
If the scanner registered this adapter as an I/O extension, the \\
adapter is active in this state.
\end{tabular} \\
\hline ERROR & Critical error \\
\hline BUS_ERROR & Ethernet is not ready yet or is unavailable. \\
\hline
\end{tabular}

\section*{ERROR (EtherNet/IP adapter error state)}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline NO_ERROR & No error \\
\hline TIME_OUT & Timeout \\
\hline CONFIGURATION_FAILED & \begin{tabular}{l}
Failed to initialize resources, load connector parameters, or \\
communicate with sub-connectors (modules)
\end{tabular} \\
\hline IP_CONFIG_FAILED & The Ethernet node issued an error \\
\hline IMPLICITMESSAGING_CONFIG_FAILED & \begin{tabular}{l}
Failed to create UDP port \\
"CIP_ENC.ParameterList.gc_uiUDPPort" (default: 2222)
\end{tabular} \\
\hline EXPLICITMESSAGING_CONFIG_FAILED & \begin{tabular}{l}
Failed to create TCP / UDP port \\
IIP_ENC.ParameterList.gc_uiTCPPort" (default: 44818)
\end{tabular} \\
\hline EXPLICITMESSAGE_RECEIVE_FAILED & \begin{tabular}{l}
Problem related to TCP or UDP port socket | \\
CIP_ENC.ParameterList.gc_uiTCPPort | (default: 44818)
\end{tabular} \\
\hline EXPLICITMESSAGE_SEND_FAILED & \begin{tabular}{l}
Problem related to TCP or UDP port socket | \\
CIP_ENC.ParameterList.gc_uiTCPPort | (default: 44818)
\end{tabular} \\
\hline LICENSE_MISSING & No license \\
\hline
\end{tabular}

\subsection*{10.6.4 Module (EtherNet/IP Module Device)}

This is a function block (FB) that controls the EtherNet/IP module device.
This function block is automatically generated by adding an EtherNet/IP module device and the name of the device that is added is used as the instance name.

\section*{Example}

Adding an EtherNet/IP module device named "EtherNet_IP_Module" to EtherNet/IP adapter device

\section*{Icon}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Output & eState & \begin{tabular}{l}
MODULEST \\
ATE
\end{tabular} & Module device state \\
\hline
\end{tabular}

MODULESTATE (EtherNet/IP module device state)
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline NOT_CONFIGURED & Parameters are being loaded. \\
\hline CONFIGURED & A CIP object has been created. \\
\hline NO_CONNECTION & \begin{tabular}{l}
The protocol stack has been started, but the scanner is \\
unconnected.
\end{tabular} \\
\hline RUNNING & The protocol stack is running, and the scanner is connected. \\
\hline STOPPED & \begin{tabular}{l}
The Ethernet node is inactive, and the device is waiting for the \\
Ethernet node to return.
\end{tabular} \\
\hline DISABLED & The device is disabled in device tree. \\
\hline ERROR & Critical error \\
\hline
\end{tabular}

\subsection*{10.6.5 Apply_Attributes (Apply_Attributes Service)}

This is a function block (FB) that calls the "Apply_Attributes" service of the CIP object instance.
The attribute set in "Get_Attribut_Single" or "Get_Attribut_All" is adopted and saved in the adapter.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{3}{*}{ Input } & xExecute & BOOL & Execution flag \\
\cline { 2 - 4 } & \begin{tabular}{l}
itfEtherNetI \\
PDevice
\end{tabular} & \begin{tabular}{l}
IEtherNetIP \\
Service
\end{tabular} & EtherNet/IP device that implements the EtherNet/IP service \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{} & eClass & \begin{tabular}{l}
ENIP.CIPCla \\
ss
\end{tabular} & Class that executes the service \\
\cline { 2 - 5 } & dwInstance & DWORD & \begin{tabular}{l}
Instance that executes the service \\
(0: Class level, 1-x: Instance level)
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & Completion flag \\
\cline { 2 - 5 } & xBusy & BOOL & Busy flag \\
\cline { 2 - 5 } & xError & BOOL & Error flag \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
ENIP.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Error \\
\((0-255: ~ C I P ~ e r r o r, ~ 256-x: ~ L i b r a r y ~ e r r o r) ~\)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.6.6 Generic_Service (Generic Service Execution)}

This is a function block (FB) that executes generic services with the EtherNet/IP adapter.
Messages are sent as unconnected explicit message requests.

\section*{C Note}
- The endianness of data to be sent or received must be exchanged by devices.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Execution flag \\
\cline { 2 - 4 } & \begin{tabular}{l}
itfEtherNetI \\
PDevice
\end{tabular} & \begin{tabular}{l}
IEtherNetIP \\
Service
\end{tabular} & EtherNet/IP device that implements the EtherNet/IP service \\
\cline { 2 - 4 } & eClass & \begin{tabular}{l}
ENIP.CIPCla \\
ss
\end{tabular} & Class that executes the service \\
\cline { 2 - 4 } & dwInstance & DWORD & \begin{tabular}{l}
Instance that executes the service \\
(0: Class level, 1-x: Instance level)
\end{tabular} \\
\cline { 2 - 5 } & wAttribute & WORD & Attribute corresponding to the service \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{5}{*}{} & eService & ENIP.CIPCo mmonServic e & CIPCommonService member service code or vendor-specific service code \\
\hline & pWriteData & \begin{tabular}{l}
POINTER \\
TO BYTE
\end{tabular} & Pointer to data to be written to the EtherNet/IP adapter. The parameter is set to 0 when no data is sent. \\
\hline & udiWriteDat aSize & UDINT & Size of data to be written to the EtherNet/IP adapter. The parameter is set to 0 when no data is sent. \\
\hline & pReadData & \begin{tabular}{l}
POINTER \\
TO BYTE
\end{tabular} & Storage pointer to data received from the EtherNet/IP adapter. The parameter is set to 0 when no data is received. \\
\hline & udiReadDat aSize & UDINT & Size of storage buffer for data received from the EtherNet/IP adapter. The parameter is set to 0 when no data is received. \\
\hline \multirow[t]{5}{*}{Output} & xDone & BOOL & Completion flag \\
\hline & xBusy & BOOL & Busy flag \\
\hline & xError & BOOL & Error flag \\
\hline & eError & ENIP.ERRO R & \begin{tabular}{l}
Error \\
(0-255: CIP error, 256-x: Library error)
\end{tabular} \\
\hline & udiReceived DataSize & UDINT & Size of received data \\
\hline
\end{tabular}

\section*{- ENIP.CIPCommonService (CIPCommonService member service code)}
\begin{tabular}{|l|l|}
\hline Name & Value \\
\hline None & \(16 \# 0\) \\
\hline GET_ATTRIBUTES_ALL & \(16 \# 1\) \\
\hline SET_ATTRIBUTES_ALL & \(16 \# 2\) \\
\hline RESET & \(16 \# 5\) \\
\hline START & \(16 \# 6\) \\
\hline STOP & \(16 \# 7\) \\
\hline APPLY_ATTRIBUTES & \(16 \# \mathrm{D}\) \\
\hline GET_ATTRIBUTE_SINGLE & \(16 \# E\) \\
\hline SET_ATTRIBUTE_SINGLE & \(16 \# 10\) \\
\hline NO_OPERATION & \(16 \# 17\) \\
\hline
\end{tabular}

\subsection*{10.6.7 Get_Attribute_Single (Inquire Specific Attributes of a Specific Instance)}

This is a function block (FB) that inquires specific attributes of a specific instance of the CIP object.

\section*{- Icon}

- Parameter
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{7}{*}{Input} & xExecute & BOOL & Execution flag \\
\hline & itfEtherNetl PDevice & IEtherNetIP Service & EtherNet/IP device that implements the EtherNet/IP service \\
\hline & eClass & ENIP.CIPCla ss & Class that executes the service \\
\hline & dwInstance & DWORD & Instance that executes the service (0: Class level, 1-x: Instance level) \\
\hline & wAttribute & WORD & Attribute corresponding to the service \\
\hline & pData & \begin{tabular}{l}
POINTER \\
TO BYTE
\end{tabular} & Storage pointer to data received from the EtherNet/IP adapter \\
\hline & udiDataSize & UDINT & Size of storage buffer for data received from the EtherNet/IP adapter \\
\hline \multirow[t]{5}{*}{Output} & xDone & BOOL & Completion flag \\
\hline & xBusy & BOOL & Busy flag \\
\hline & xError & BOOL & Error flag \\
\hline & eError & ENIP.ERRO
R & \begin{tabular}{l}
Error \\
(0-255: CIP error, 256-x: Library error)
\end{tabular} \\
\hline & udiReceived DataSize & UDINT & Size of received data \\
\hline
\end{tabular}

\subsection*{10.6.8 Get_Attributes_All (Inquire All Attributes of a Specific Instance)}

This is a function block (FB) that inquires all attributes of a specific instance of the CIP object.

Icon

\section*{Parameter}
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{6}{*}{Input} & xExecute & BOOL & Execution flag \\
\hline & itfEtherNetl PDevice & IEtherNetIP Service & EtherNet/IP device that implements the EtherNet/IP service \\
\hline & eClass & ENIP.CIPCla ss & Class that executes the service \\
\hline & dwInstance & DWORD & Instance that executes the service (0: Class level, 1-x: Instance level) \\
\hline & pData & \begin{tabular}{l}
POINTER \\
TO BYTE
\end{tabular} & Storage pointer to data received from the EtherNet/IP adapter \\
\hline & udiDataSize & UDINT & Size of storage buffer for data received from the EtherNet/IP adapter \\
\hline \multirow[t]{5}{*}{Output} & xDone & BOOL & Completion flag \\
\hline & xBusy & BOOL & Busy flag \\
\hline & xError & BOOL & Error flag \\
\hline & eError & ENIP.ERRO
\[
R
\] & \begin{tabular}{l}
Error \\
(0-255: CIP error, 256-x: Library error)
\end{tabular} \\
\hline & udiReceived DataSize & UDINT & Size of received data \\
\hline
\end{tabular}

\subsection*{10.6.9 Set_Attribute_Single (Set Specific Attributes of a Specific Instance)}

This is a function block (FB) that sets specific attributes of a specific instance of the CIP object
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{6}{*}{ Input } & xExecute & BOOL & Execution flag \\
\cline { 2 - 5 } & \begin{tabular}{l}
itfEtherNetl \\
PDevice
\end{tabular} & \begin{tabular}{l}
IEtherNetIP \\
Service
\end{tabular} & EtherNet/IP device that implements the EtherNet/IP service \\
\cline { 2 - 5 } & eClass & \begin{tabular}{l}
ENIP.CIPCla \\
ss
\end{tabular} & Class that executes the service \\
\cline { 2 - 5 } & dwInstance & DWORD & \begin{tabular}{l}
Instance that executes the service \\
(0: Class level, 1-x: Instance level)
\end{tabular} \\
\cline { 2 - 5 } & wAttribute & WORD & Attribute corresponding to the service \\
\cline { 2 - 5 } & pData & \begin{tabular}{l}
POINTER \\
TO BYTE
\end{tabular} & Pointer to data to be written \\
\cline { 2 - 5 } & udiDataSize & UDINT & Size of data to be written \\
\hline & xDone & BOOL & Completion flag \\
\cline { 2 - 5 } & xBusy & BOOL & Busy flag \\
\cline { 2 - 5 } & xError & BOOL & Error flag \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
ENIP.ERRO \\
\(R\)
\end{tabular} & \begin{tabular}{l}
Error \\
(0-255: CIP error, 256-x: Library error)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.6.10 Set_Attributes_All (Set All Attributes of a Specific Instance)}

This is a function block (FB) that sets all attributes of a specific instance of the CIP object.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Execution flag \\
\cline { 2 - 4 } & \begin{tabular}{l}
itfEtherNetl \\
PDevice
\end{tabular} & \begin{tabular}{l}
IEtherNetIP \\
Service
\end{tabular} & EtherNet/IP device that implements the EtherNet/IP service \\
\cline { 2 - 4 } & eClass & \begin{tabular}{l}
ENIP.CIPCla \\
ss
\end{tabular} & Class that executes the service \\
\cline { 2 - 4 } & dwInstance & DWORD & \begin{tabular}{l}
Instance that executes the service \\
(0: Class level, 1-x: Instance level)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{} & pData & \begin{tabular}{l}
POINTER \\
TO BYTE
\end{tabular} & Pointer to data to be written \\
\cline { 2 - 4 } & udiDataSize & UDINT & Size of data to be written \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & Completion flag \\
\cline { 2 - 5 } & xBusy & BOOL & Busy flag \\
\cline { 2 - 5 } & xError & BOOL & Error flag \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
ENIP.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Error \\
(0-255: CIP error, 256-x: Library error)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.6.11 NOP (NOP Service)}

This is a function block (FB) that executes the NOP service of a specific instance of the CIP object.

Normally, this service is used to check whether the adapter can still be used in the network.
■ Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Execution flag \\
\cline { 2 - 5 } & \begin{tabular}{l}
itfEtherNetl \\
PDevice
\end{tabular} & \begin{tabular}{l}
IEtherNetIP \\
Service
\end{tabular} & EtherNet/IP device that implements the EtherNet/IP service \\
\cline { 2 - 5 } & eClass & \begin{tabular}{l}
ENIP.CIPCla \\
ss
\end{tabular} & Class that executes the service \\
\cline { 2 - 5 } & dwInstance & DWORD & \begin{tabular}{l}
Instance that executes the service \\
(0: Class level, 1-x: Instance level)
\end{tabular} \\
\hline Output & xDone & BOOL & Completion flag \\
\cline { 2 - 5 } & xBusy & BOOL & Busy flag \\
\cline { 2 - 5 } & xError & BOOL & Error flag \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
ENIP.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Error \\
\((0-255: ~ C I P ~ e r r o r, ~ 256-x: ~ L i b r a r y ~ e r r o r) ~\)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.6.12 Reset (Reset Service)}

This is a function block (FB) that executes the Reset service of a specific instance of the CIP object.

The effects of this service differ according to the CIP object.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Execution flag \\
\cline { 2 - 5 } & \begin{tabular}{l}
itfEtherNetI \\
PDevice
\end{tabular} & \begin{tabular}{l}
IEtherNetIP \\
Service
\end{tabular} & EtherNet/IP device that implements the EtherNet/IP service \\
\cline { 2 - 5 } & eClass & \begin{tabular}{l}
ENIP.CIPCla \\
ss
\end{tabular} & Class that executes the service \\
\cline { 2 - 5 } & dwInstance & DWORD & \begin{tabular}{l}
Instance that executes the service \\
(0: Class level, 1-x: Instance level)
\end{tabular} \\
\hline \multirow{4}{*}{\begin{tabular}{ll}
Output & xDone \\
& BBusy \\
& BOOL
\end{tabular}} & Completion flag \\
\cline { 2 - 5 } & xError & BOOL & Busy flag \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
ENIP.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Error flag \\
(0-255: CIP error, 256-x: Library error)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.6.13 Start (Start Service)}

This is a function block (FB) that executes the Start service of a specific instance of the CIP object.

The effects of this service differ according to the CIP object.

\section*{- Icon}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Execution flag \\
\cline { 2 - 5 } & \begin{tabular}{l}
itfEtherNetl \\
PDevice
\end{tabular} & \begin{tabular}{l}
IEtherNetIP \\
Service
\end{tabular} & EtherNet/IP device that implements the EtherNet/IP service \\
\cline { 2 - 5 } & eClass & \begin{tabular}{l}
ENIP.CIPCla \\
ss
\end{tabular} & Class that executes the service \\
\cline { 2 - 5 } & dwInstance & DWORD & \begin{tabular}{l}
Instance that executes the service \\
(0: Class level, 1-x: Instance level)
\end{tabular} \\
\hline Output & xDone & BOOL & Completion flag \\
\cline { 2 - 5 } & xBusy & BOOL & Busy flag \\
\cline { 2 - 5 } & xError & BOOL & Error flag \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
ENIP.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
Error \\
\((0-255: ~ C I P ~ e r r o r, ~ 256-x: ~ L i b r a r y ~ e r r o r) ~\)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.6.14 Stop (Stop Service)}

This is a function block (FB) that executes the Stop service of a specific instance of the CIP object.

The effects of this service differ according to the CIP object.

\section*{- Icon}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Execution flag \\
\cline { 2 - 5 } & \begin{tabular}{l}
itfEtherNetl \\
PDevice
\end{tabular} & \begin{tabular}{l}
IEtherNetIP \\
Service
\end{tabular} & EtherNet/IP device that implements the EtherNet/IP service \\
\cline { 2 - 5 } & eClass & \begin{tabular}{l}
ENIP.CIPCla \\
ss
\end{tabular} & Class that executes the service \\
\cline { 2 - 5 } & dwInstance & DWORD & \begin{tabular}{l}
Instance that executes the service \\
(0: Class level, 1-x: Instance level)
\end{tabular} \\
\hline \multirow{3}{*}{ Output } & xDone & BOOL & Completion flag \\
\cline { 2 - 5 } & xBusy & BOOL & Busy flag \\
\cline { 2 - 5 } & xError & BOOL & Error flag \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline & eError & ENIP.ERRO & Error \\
& & R & (0-255: CIP error, 256-x: Library error) \\
\hline
\end{tabular}

\subsection*{10.6.15 ENIP.ERROR (Message Service Instruction Error Code)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline NO_ERROR & 0 & \begin{tabular}{l}
The service was executed normally by the specified \\
object.
\end{tabular} \\
\hline CONNECTION_FAILURE & \(16 \# 1\) & \begin{tabular}{l}
The connection-related service failed due to the \\
connection path.
\end{tabular} \\
\hline RESOURCE_UNAVAILABLE & \(16 \# 2\) & \begin{tabular}{l}
The object was unable to use the resources that it \\
required to execute the requested service.
\end{tabular} \\
\hline INVALID_PARAM_VALUE & \(16 \# 3\) & \begin{tabular}{l}
Refer to status code 0x20 that is an appropriate value to \\
be used in this situation.
\end{tabular} \\
\hline PATH_SEGMENT_ERROR & \(16 \# 5\) & \begin{tabular}{l}
The path segment identifier or segment syntax was not \\
recognized by the processing node. \\
Path processing stops when a path segment error occurs.
\end{tabular} \\
\hline PATH_DESTINATION_UNKNOWN & \begin{tabular}{l}
The path refers to an object class, instance, or structure \\
element that is unknown or not included in the processing \\
node. If an unknown path destination error occurs, path \\
processing will stop.
\end{tabular} \\
\hline PARTIAL_TRANSFER & \(16 \# 6\) & Only part of the expected data was transferred. \\
\hline CONNECTION_LOST & \(16 \# 7\) & The messaging connection was lost. \\
\hline SERVICE_NOT_SUPPORTED & \(16 \# 8\) & \begin{tabular}{l}
The requested service is not implemented or defined for \\
this object class or instance.
\end{tabular} \\
\hline NOT_ENOUGH_DATA & \(16 \# 13\) & \begin{tabular}{l}
The service did not provide enough data to execute the \\
specified operation.
\end{tabular} \\
\hline INVALID_ATTRIBUTE_VALUE & \(16 \# 9\) & \(16 \# A\) \\
\hline ITTRIBUTE_LIST_ERROR & \begin{tabular}{l}
The status of the attribute of Getata was detribute_List or \\
Set_Attribute_List response is other than zero.
\end{tabular} \\
\hline OBJECT_STATE_ERROR & \(16 \#\) The & \(16 \#\) The service specifies an operation that fragmentates half \\
of primitive data values which are a REAL data type.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Value & Description \\
\hline ATTRIBUTE_NOT_SUPPORTED & 16\#14 & The attribute specified in the request is not supported. \\
\hline TOO_MUCH_DATA & 16\#15 & The service provided more data than expected. \\
\hline OBJECT_DOES_NOT_EXIST & 16\#16 & The specified object does not exist in the device. \\
\hline SERVICE_FRAGMENTATION_ SEQUENCE_NOT_IN_PROGRESS & 16\#17 & The fragmentation sequence of this service is currently not active for this data. \\
\hline NO_STORED_ATTRIBUTE_DATA & 16\#18 & The attribute data of this object has not been saved before the requested service is executed. \\
\hline STORE_OPERATION_FAILURE & 16\#19 & The attribute data of this object has not been saved because an error occurred during the attempt to save the data. \\
\hline ROUTING_FAILURE_REQUEST_ PACKET_TOO_LARGE & 16\#1A & The service request packet was too large to send through the network existing in the path to the destination. The routing device forcibly canceled the service. \\
\hline ROUTING_FAILURE_RESPONSE_ PACKET_TOO_LARGE & 16\#1B & The service response packet was too large to send through the network existing in the path from the destination. The routing device forcibly canceled the service. \\
\hline MISSING_ATTRIBUTE_LIST_ ENTRY_DATA & 16\#1C & The service did not provide attributes in the list of attributes that it requires to execute the requested operation. \\
\hline INVALID_ATTRIBUTE_VALUE_LIST & 16\#1D & The service returned a list of provided attributes together with status information of invalid attributes. \\
\hline EMBEDDED_SERVICE_ERROR & 16\#1E & An error occurred in the embedded service. \\
\hline VENDOR_SPECIFIC_ERROR & 16\#1F & A vendor-specific error occurred. The additional code field for error response is used to define a specific error that occurred. Use this field only if the error in question does not apply to any of the error codes shown in these tables or those shown in the object class definition. \\
\hline INVALID_PARAMETER & 16\#20 & The parameter associated with the request is invalid. This code is used when the parameter does not meet the requirements of this specification or the requirements defined in the application object specification. \\
\hline WRITE_ONEC_VALUE_OR_ MEDIUM_ALREADY_WRITTEN & 16\#21 & An attempt was made to write to a write-once medium (such as WORM drive or PROM) to which data has already been written or to change a value that cannot be changed once set. \\
\hline INVALID_REPLY_RECEIVED & 16\#22 & An invalid response was received (for example, the response service code does not match the request service code or the response message is shorter than the expected minimum response size). This status code is useful to investigate other causes of invalid responses. \\
\hline BUFFER_OVERFLOW & 16\#23 & The size of the received message exceeds the maximum size of messages that can be handled by the receiver buffer. The entire message was discarded. \\
\hline MESSAGE_FORMAT_ERROR & 16\#24 & The format of the received message is not supported by the server. \\
\hline KEY_FAILURE_IN_PATH & 16\#25 & The key segment included as the first segment of the path does not match the destination module. The objectspecific status indicates which part of the key check has failed. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Value & Description \\
\hline PATH_SIZE_INVALID & 16\#26 & The size of the path sent with the service request is not large enough to route the request to the object or routing data included in the path is too much. \\
\hline UNEXPECTED_ATTRIBUTE_IN_LIST & 16\#27 & An attempt was made to set an attribute that cannot currently be set. \\
\hline INVALID_MEMBER_ID & 16\#28 & The member ID specified in the request does not exist in the specified class, instance, or attribute. \\
\hline MEMBER_NOT_SETTABLE & 16\#29 & A request to change an unchangeable member was received. \\
\hline GROUP_2_ONLY_SERVER_ GENERAL_FAILURE & 16\#2A & This error code is issued only by DeviceNet Group 2 Only servers with 4 K or less code space and is supported only instead of the server. Attributes are not supported and cannot be set. \\
\hline UNKNOWN_MODBUS_ERROR & 16\#2B & The program for conversion from CIP to Modbus received an unknown Modbus exception code. \\
\hline ATTRIBUTE_NOT_GETTABLE & 16\#2C & A request to read an unreadable attribute was received. \\
\hline INSTANCE_NOT_DELETABLE & 16\#2D & The requested object instance cannot be deleted. \\
\hline SERVICE_NOT_SUPPORTED_ FOR_SPECIFIED_PATH & 16\#2E & The object supports the service but does not support the specified application path (such as attributes). Note: Do not use this code for the set service. (Instead, use general status code \(0 \times 0 \mathrm{E}\) or \(0 \times 29\).) \\
\hline TIME_OUT & 16\#100 & The request has timed out. \\
\hline INTERFACE_MISSING & & IEtherNetIPService is not implemented. \\
\hline REMOTE_CALL_FAILED & & There is no physical connection. \\
\hline NULL_POINTER & & A null value was entered by mistake. \\
\hline INVALID_DATA_SIZE & & The data size is invalid. \\
\hline WRONG_INTERFACE_VERSION & & The versions do not match. The device is not equipped with the same version of interface as the called method. \\
\hline NO_MEMORY & & There is not enough memory. \\
\hline UNKNOWN_ERROR & & An unknown error occurred. \\
\hline ABORTED & & The service was aborted. \\
\hline
\end{tabular}

\subsection*{10.6.16 ENIP.CIPClass (Service Class Code)}
\begin{tabular}{|l|l|}
\hline Name & Value \\
\hline IdentityObject & \(16 \# 1\) \\
\hline MessageRouterObject & \(16 \# 2\) \\
\hline DeviceNetObject & \(16 \# 3\) \\
\hline AssemblyObject & \(16 \# 4\) \\
\hline ConnectionObject & \(16 \# 5\) \\
\hline ConnectionManagerObject & \(16 \# 6\) \\
\hline RegisterObject & \(16 \# 7\) \\
\hline
\end{tabular}

\subsection*{10.6 LAN Port (EtherNet/IP)}
\begin{tabular}{|c|c|}
\hline Name & Value \\
\hline DiscretelnputPointObject & 16\#8 \\
\hline DiscreteOutputPointObject & 16\#9 \\
\hline AnalogInputPointObject & 16\#A \\
\hline AnalogOutputPointObject & 16\#B \\
\hline PresenceSensingObject & 16\#E \\
\hline ParameterObject & 16\#F \\
\hline ParameterGroupObject & 16\#10 \\
\hline GroupObject & 16\#12 \\
\hline DiscretelnputGroupObject & 16\#1D \\
\hline DiscreteOutputGroupObject & 16\#1E \\
\hline DiscreteGroupObject & 16\#1F \\
\hline AnalogInputGroupObject & 16\#20 \\
\hline AnalogOutputGroupObject & 16\#21 \\
\hline AnalogGroupObject & 16\#22 \\
\hline PositionSensorObject & 16\#23 \\
\hline PositionControllerSupervisorObject & 16\#24 \\
\hline PositionControllerObject & 16\#25 \\
\hline BlockSequencerObject & 16\#26 \\
\hline CommandBlockObject & 16\#27 \\
\hline MotorDataObject & 16\#28 \\
\hline ControlSupervisorObject & 16\#29 \\
\hline ACDCDriveObject & 16\#2A \\
\hline AcknowledgeHandlerObject & 16\#2B \\
\hline OverloadObject & 16\#2C \\
\hline SoftstartObject & 16\#2D \\
\hline SelectionObject & 16\#2E \\
\hline S_DeviceSupervisorObject & 16\#30 \\
\hline S_AnalogSensorObject & 16\#31 \\
\hline S_AnalogActuatorObject & 16\#32 \\
\hline S_SingleStageControllerObject & 16\#33 \\
\hline S_GasCalibrationObject & 16\#34 \\
\hline TripPointObject & 16\#35 \\
\hline FileObject & 16\#37 \\
\hline S_PartialPressureObject & 16\#38 \\
\hline SafetySupervisorObject & 16\#39 \\
\hline SafetyValidatorObject & 16\#3A \\
\hline SafetyDiscreteOutputPointObject & 16\#3B \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Name & Value \\
\hline SafetyDiscreteOutputGroupObject & 16\#3C \\
\hline SafetyDiscretelnputPointObject & 16\#3D \\
\hline SafetyDiscreteInputGroupObject & 16\#3E \\
\hline SafetyDualChannelOutputObject & 16\#3F \\
\hline S_SensorCalibrationObject & 16\#40 \\
\hline EventLogObject & 16\#41 \\
\hline MotionDeviceAxisObject & 16\#42 \\
\hline TimeSyncObject & 16\#43 \\
\hline ModbusObject & 16\#44 \\
\hline OriginatorConnectionListObject & 16\#45 \\
\hline ModbusSerialLinkObject & 16\#46 \\
\hline DeviceLevelRingObject & 16\#47 \\
\hline QoSObject & 16\#48 \\
\hline SafetyAnalogInputPointObject & 16\#49 \\
\hline SafetyAnalogInputGroupObject & 16\#4A \\
\hline SafetyDualChannelAnalogInputObject & 16\#4B \\
\hline SERCOSIIILinkObject & 16\#4C \\
\hline TargetConnectionListObject & 16\#4D \\
\hline EnergyObject & 16\#4E \\
\hline ElectricalEnergyObject & 16\#4F \\
\hline Non_ElectricalEnergyObject & 16\#50 \\
\hline BaseSwitchObject & 16\#51 \\
\hline SNMPObject & 16\#52 \\
\hline PowerManagementObject & 16\#53 \\
\hline ControlNetObject & 16\#F0 \\
\hline ControlNetKeeperObject & 16\#F1 \\
\hline ControlNetSchedulingObject & 16\#F2 \\
\hline ConnectionConfigurationObject & 16\#F3 \\
\hline PortObject & 16\#F4 \\
\hline TCPIPInterfaceObject & 16\#F5 \\
\hline EthernetLinkObject & 16\#F6 \\
\hline CompoNetLink & 16\#F7 \\
\hline CompoNetRepeater & 16\#F8 \\
\hline
\end{tabular}

\subsection*{10.7 SD Card Operation (File Operation)}

\subsection*{10.7 SD Card Operation (File Operation)}

Files in the SD card inserted in the SD memory card slot can be operated.
In file operation using the GM1 Controller, WSTRING (kanji) cannot be used in the file name and directory name.

\subsection*{10.7.1 FILE.Open (Open File)}

This is a function block that opens a file or creates a new file.

\section*{- Icon}

- Parameter
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{4}{*}{Input} & xExecute & BOOL & Starts execution at the rising edge. \\
\hline & sFileName & FILE.CAA.FI LENAME & Specifies the file name with an absolute path or relative path. \\
\hline & eFileMode & FILE.MODE & File mode \\
\hline & xExclusive & BOOL & TRUE: Exclusive access mode FALSE: Multiple access mode xExclusive is not supported. \\
\hline \multirow[t]{5}{*}{Output} & xDone & BOOL & TRUE: Execution is completed. \\
\hline & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\hline & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline & eError & FILE.ERRO R & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\hline & hFile & FILE.CAA.H ANDLE & Handle of a file \\
\hline
\end{tabular}

FILE.MODE (Enumeration type)
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline MWRITE & 0 & \begin{tabular}{l}
Overwrite mode (When the specified file does not \\
exist, a new file is created.)
\end{tabular} \\
\hline MREAD & 1 & Read mode \\
\hline MRDWR & 2 & \begin{tabular}{l}
Read / write mode (When the specified file does not \\
exist, a new file is created.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline MAPPD & 3 & Append write mode \\
\hline
\end{tabular}

\section*{1 Info.}
- You cannot use full size characters and the following symbols in a file name: []], [/], [:], [*], [?], ["], [<], [>], []].

\subsection*{10.7.2 FILE.Close (Close File)}

This is a function block that closes a file.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 5 } & hFile & \begin{tabular}{l}
FILE.CAA.H \\
ANDLE
\end{tabular} & \begin{tabular}{l}
Handle of a file to be closed \\
Specifies the handle output by FILE. Open.
\end{tabular} \\
\hline \multirow{4}{*}{} & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.7.3 FILE.Read (Read File)}

This is a function block that reads data from the file opened.

\subsection*{10.7 SD Card Operation (File Operation)}

\section*{Icon}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{6}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 5 } & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\cline { 2 - 5 } & udiTimeOut & UDINT & Timeout time until the execution is stopped \((\mu \mathrm{s})\) \\
\cline { 2 - 6 } & hFile & \begin{tabular}{l}
FILE.CAA.H \\
ANDLE
\end{tabular} & \begin{tabular}{l}
Handle of a file \\
Specifies the handle output by FILE.Open.
\end{tabular} \\
\cline { 2 - 5 } & pBuffer & \begin{tabular}{l}
FILE.CAA.P \\
VOID
\end{tabular} & \begin{tabular}{l}
Pointer to the data buffer to be read \\
Gets a pointer by the ADR operator.
\end{tabular} \\
\cline { 2 - 5 } & szBuffer & \begin{tabular}{l}
FILE.CAA.S \\
IZE
\end{tabular} & \begin{tabular}{l}
Size of the data buffer to be read \\
Gets a pointer by the SIZEOF operator.
\end{tabular} \\
\hline & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & xAborted & BOOL & TRUE: Execution is stopped by the user. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
& szSize & \begin{tabular}{l}
FILE.CAA.S \\
IZE
\end{tabular} & Size of the read data buffer \\
\cline { 2 - 4 } & & \\
\hline
\end{tabular}

\subsection*{10.7.4 FILE.Write (Write File)}

This is a function block that writes data to the file opened.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 7 } & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\cline { 2 - 6 } & udiTimeOut & UDINT & Timeout time until the execution is stopped \((\mu \mathrm{s})\) \\
\cline { 2 - 6 } & hFile & \begin{tabular}{l}
FILE.CAA.H \\
ANDLE
\end{tabular} & \begin{tabular}{l}
Handle of a file \\
Specifies the handle output by FILE. Open.
\end{tabular} \\
\cline { 2 - 5 } & pBuffer & \begin{tabular}{l}
FILE.CAA.P \\
VOID
\end{tabular} & \begin{tabular}{l}
Pointer to the data buffer to be written \\
Gets a pointer by the ADR operator.
\end{tabular} \\
\cline { 2 - 5 } & szSize & \begin{tabular}{l}
FILE.CAA.S \\
IZE
\end{tabular} & \begin{tabular}{l}
Size of the data buffer to be written \\
Gets a pointer by the SIZEOF operator.
\end{tabular} \\
\hline & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline & xAborted & BOOL & TRUE: Execution is stopped by the user. \\
\hline & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
& & &
\end{tabular}

\subsection*{10.7.5 FILE.Flush (Flush File)}

This is a function block that flushes buffer contents to a file.
- Icon

\subsection*{10.7 SD Card Operation (File Operation)}

\section*{Parameter}
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{2}{*}{Input} & xExecute & BOOL & Starts execution at the rising edge. \\
\hline & hFile & FILE.CAA.H ANDLE & \begin{tabular}{l}
Handle of a file \\
Specifies the handle output by FILE.Open.
\end{tabular} \\
\hline \multirow[t]{4}{*}{Output} & xDone & BOOL & TRUE: Execution is completed. \\
\hline & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\hline & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline & eError & FILE.ERRO R & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.7.6 FILE.Copy (Copy File)}

This is a function block that copies a file.

\section*{- Icon}

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{6}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 5 } & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\cline { 2 - 5 } & udiTimeOut & UDINT & Timeout time until the execution is stopped (\(\mu \mathrm{s}\)) \\
\cline { 2 - 5 } & \begin{tabular}{l}
sFileNameD \\
est
\end{tabular} & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & Copy destination file name \\
\cline { 2 - 5 } & \begin{tabular}{l}
sFileNameS \\
ource
\end{tabular} & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & Copy source file name \\
\cline { 2 - 5 } & xOverWrite & BOOL & \begin{tabular}{l}
TRUE: Copies to overwrite an existing file. \\
FALSE: Outputs an error without copying to overwrite. \\
If FALSE is specified in a case where there is an existing file, copy is \\
not executed. No error is output.
\end{tabular} \\
\hline \multirow{3}{*}{ Output } & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{} & xAborted & BOOL & TRUE: Execution is stopped by the user. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\cline { 2 - 5 } & szSize & \begin{tabular}{l}
FILE.CAA.S \\
IZE
\end{tabular} & Size of the copied file \\
\hline
\end{tabular}

\section*{1 Info.}
- You cannot use full size characters and the following symbols in a file name: [], [/], [:], [*], [?], ["], [<], [>], []].

\subsection*{10.7.7 FILE.Rename (Rename File)}

This is a function block that changes a file name.
It is not possible to change the directory name of a directory that is currently open. Close it using the DirClose function block.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 5 } & \begin{tabular}{l}
sFileNameO \\
Id
\end{tabular} & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & File name before change \\
\cline { 2 - 5 } & \begin{tabular}{l}
sFileNameO \\
Id
\end{tabular} & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & File name after change \\
\hline Output & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)". \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{(1) Info.}
- You cannot use full size characters and the following symbols in a file name: [], [/], [:], [*], [?], ["], [<], [>], []].

\subsection*{10.7 SD Card Operation (File Operation)}

\subsection*{10.7.8 FILE.Delete (Delete File)}

This is a function block that deletes a file.
It is not possible to delete a file that is currently open. Close it using the Close function block.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 4 } & sFileName & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & File to be deleted \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 4 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.7.9 FILE.EOF (End of File)}

This is a function block that determines whether the current offset of a file is EOF (End Of File) or not. It can be used only when the OPEN mode is set to MREAD/MREADPLUS.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xExecute & BOOL & Starts execution at the rising edge. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Output } & hFile & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & \begin{tabular}{l}
Handle of a file \\
Specifies the handle output by FILE.Open.
\end{tabular} \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
TILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\cline { 2 - 5 } & xEOF & BOOL & File: The current offset is EOF. \\
\hline
\end{tabular}

\subsection*{10.7.10 FILE.GetAttribute (Get File Attribute)}

This is a function block that gets file attributes.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 5 } & hFile & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & \begin{tabular}{l}
Handle of a file \\
Specifies the handle output by FILE. Open.
\end{tabular} \\
\hline \multirow{4}{*}{} & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\cline { 2 - 5 } & eFileAttrib & \begin{tabular}{l}
FILE.ATTRI \\
B
\end{tabular} & \begin{tabular}{l}
TRUE: The current offset is EOF. \\
FALSE: The current offset is not EOF.
\end{tabular} \\
\hline
\end{tabular}

\section*{FILE.ATTRIB (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline ARCHIVE & 0 & Archive file \\
\hline HIDDEN & 1 & Hidden file \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline NORMAL & 2 & File without any other attributes \\
\hline READONLY & 3 & Read only \\
\hline
\end{tabular}

\subsection*{10.7.11 FILE.GetPos (Get File Offset)}

This is a function block that gets the current offset of a file.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 4 } & hFile & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & \begin{tabular}{l}
Handle of a file \\
Specifies the handle output by FILE.Open.
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\cline { 2 - 5 } & udiPos & \(\ldots\) UXINT & The current offset (byte) is output. \\
\hline
\end{tabular}

\subsection*{10.7.12 FILE.GetSize (Get File Size)}

This is a function block that gets the file size.

\section*{- Icon}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 4 } & sFileName & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & File from which to get the file size \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\cline { 2 - 4 } & szSize & \begin{tabular}{l}
FILE.CAA.S \\
IZE
\end{tabular} & The file size (byte) is output. \\
\hline
\end{tabular}

\subsection*{10.7.13 FILE.GetTime (Get File Update Time)}

This is a function block that gets the update time of a file.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{3}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 4 } & sFileName & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & File from which to get the file update time \\
\hline Output & xDone & BOOL & TRUE: Execution is completed. \\
\hline
\end{tabular}

\subsection*{10.7 SD Card Operation (File Operation)}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{} & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\cline { 2 - 5 } & \begin{tabular}{l}
dtLastModifi \\
cation
\end{tabular} & \begin{tabular}{l}
DATE_AND \\
-TIME
\end{tabular} & \begin{tabular}{l}
The last update date and time is output. \\
Example: DATE_AND_TIME\#2020-01-11-15:12:30
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.7.14 FILE.SetPos (Set File Offset)}

This is a function block that sets the offset of a file.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 4 } & hFile & \begin{tabular}{l}
FILE.CAA.H \\
ANDLE
\end{tabular} & \begin{tabular}{l}
Handle of a file \\
Specifies the handle output by FILE. Open.
\end{tabular} \\
\cline { 2 - 5 } & udiPos & __UXINT & Offset to be set (byte) \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
& & & \\
\hline
\end{tabular}

\subsection*{10.7.15 FILE.ERROR (Error ID)}

This is an enumeration type error ID that is output when a function block for file operation is executed. It is used to output an error in a file operation or directory operation of the SD card.

\section*{■ FILE.ERROR (Enumeration type)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline NO_ERROR & 0 & Normal end \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline FIRST_ERROR & 5100 & First library specific error \\
\hline TIME_OUT & 5101 & Timeout \\
\hline ABORT & 5102 & Aborts processing by xAbort. \\
\hline HANDLE_INVALID & 5103 & Invalid handle \\
\hline NOT_EXIST & 5104 & No file or directory exists. \\
\hline EXIST & 5105 & A file or directory already exists \\
\hline NO_MORE_ENTRIES & 5106 & There are no other entries. \\
\hline NOT_EMPTY & 5107 & The file or directory is not empty. \\
\hline READ_ONLY_CAA & 5108 & The file or directory is write protected. \\
\hline WRONG_PARAMETER & 5109 & Wrong parameter \\
\hline ERROR_UNKNOWN & 5110 & Unknown error \\
\hline WRITE_INCOMPLETE & 5111 & Not all the data is written. \\
\hline FILE_NOT_IMPLEMENTED & 5112 & The function is not implemented. \\
\hline ASM_CREATEJOB_FAILED & 5113 & Failed to create an AsyncManager job. \\
\hline FILE_OPERATION_DENIED & 5114 & No access due to ForceFilePath / ForcelecFilePath \\
\hline FIRST_MF & 5150 & First error unique to the manufacturer \\
\hline LAST_ERROR & 5199 & \begin{tabular}{l}
insert manuf. specific errors here Last library specific \\
error
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.8 SD Card Operation (Directory Operation)}

\subsection*{10.8 SD Card Operation (Directory Operation)}

Directories in the SD card inserted in the SD memory card slot can be operated.

\subsection*{10.8.1 FILE.DirCreate (Create Directory)}

This is a function block that creates a directory. An error occurs if there already exists a subdirectory.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 4 } & sDirName & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & Specifies a new directory name with an absolute path or relative path. \\
\cline { 2 - 5 } & xParent & BOOL & \begin{tabular}{l}
TRUE: Automatically creates a non-existing sub-directory. \\
FALSE: An error occurs if there already exists a sub-directory.
\end{tabular} \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
& &
\end{tabular}

\section*{(1) Info.}
- You cannot use full size characters and the following symbols in a directory name: []], [/], [:], [*], [?], ["], [<], [>], []].

\subsection*{10.8.2 FILE.DirOpen (Open Directory)}

This is a function block that opens a directory.

\section*{■ Icon}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 5 } & sDirName & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & Specifies a directory name with an absolute path or relative path. \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Output
\end{tabular}} & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\cline { 2 - 5 } & hDir & \begin{tabular}{l}
FILE.CAA.H \\
ANDLE
\end{tabular} & Handle of the FILE.CAA.HANDLE directory \\
\hline
\end{tabular}

\section*{1 Info.}
- You cannot use full size characters and the following symbols in a directory name: []], [/], [:], [*], [?], ["], [<], [>], []].

\subsection*{10.8.3 FILE.DirClose (Close Directory)}

This is a function block that closes a directory.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xExecute & BOOL & Starts execution at the rising edge. \\
\hline
\end{tabular}

\subsection*{10.8 SD Card Operation (Directory Operation)}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Output } & hFile & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & \begin{tabular}{l}
Handle of the directory to be closed \\
Specifies the handle output by FILE.Open.
\end{tabular} \\
\cline { 2 - 4 } & xBusy & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.8.4 FILE.DirCopy (Copy Directory)}

This is a function block that copies a directory.
■ Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{6}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 5 } & \begin{tabular}{l}
sDirNameD \\
est
\end{tabular} & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & Directory name of the copy destination \\
\cline { 2 - 5 } & \begin{tabular}{l}
sDirNameS \\
ource
\end{tabular} & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & Directory of the copy source \\
\cline { 2 - 5 } & xRecursive & BOOL & TRUE: Copies the sub-directory and files. \\
\cline { 2 - 5 } & xOverWrite & BOOL & TRUE: Copies to overwrite an existing file. \\
\hline Output & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)". \\
\hline
\end{tabular}
\end{tabular}

\section*{(1) Info.}
- You cannot use full size characters and the following symbols in a directory name: []], [/], [:], [*], [?], ["], [<], [>], []].

\subsection*{10.8.5 FILE.DirRename (Rename Directory)}

This is a function block that renames a directory name. It is not possible to change the directory name of a directory that is currently open. Close it using the DirClose function block.
- Icon
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{FILE.DirRename} \\
\hline xExecute & xDone \\
\hline sDirNameOld & xBusy \\
\hline sDirNameNew & xError \\
\hline & eError \\
\hline
\end{tabular}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & xExecute & BOOL & Starts execution at the rising edge. \\
\cline { 2 - 5 } & \begin{tabular}{l}
sDirNameOI \\
d
\end{tabular} & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & Directory name before change \\
\cline { 2 - 5 } & \begin{tabular}{l}
sDirNameN \\
ew
\end{tabular} & \begin{tabular}{l}
FILE.CAA.FI \\
LENAME
\end{tabular} & Directory name after change \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Output
\end{tabular}} & xDone & BOOL & TRUE: Execution is completed. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred within the FB. \\
\cline { 2 - 5 } & eError & \begin{tabular}{l}
FILE.ERRO \\
R
\end{tabular} & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\hline
\end{tabular}

\section*{1 Info.}
- You cannot use full size characters and the following symbols in a directory name: []], [/], [:], [*], [?], ["], [<], [>], []].

\subsection*{10.8.6 FILE.DirRemove (Delete Directory)}

This is a function block that deletes a directory. It is not possible to delete a directory that is currently open. Close it using the DirClose function block.

\subsection*{10.8 SD Card Operation (Directory Operation)}

\section*{Icon}

- Parameter
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{5}{*}{Input} & xExecute & BOOL & Starts execution at the rising edge. \\
\hline & xAbort & BOOL & TRUE: Stops execution and resets all outputs. \\
\hline & udiTimeOut & UDINT & Timeout time until the execution is stopped (\(\mu \mathrm{s}\)) \\
\hline & sDirName & FILE.CAA.FI LENAME & Specifies a directory name with an absolute path or relative path. \\
\hline & xRecursive & BOOL & \begin{tabular}{l}
TRUE: Deletes the sub-directory and all files. \\
FALSE: Deletes only when the directory is empty. An error occurs if the directory is not empty.
\end{tabular} \\
\hline \multirow[t]{5}{*}{Output} & xDone & BOOL & TRUE: Execution is completed. \\
\hline & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\hline & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline & xAborted & BOOL & TRUE: Execution is stopped by the user. \\
\hline & eError & FILE.ERRO R & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.8.7 FILE.DirList (Directory List)}

This is a function block that outputs a list of directories and files inside the directory.
- Icon

\section*{- Parameter}
\begin{tabular}{|c|c|c|c|}
\hline Scope & Name & Type & Description \\
\hline \multirow[t]{2}{*}{Input} & xExecute & BOOL & Starts execution at the rising edge. \\
\hline & hDir & FILE.CAA.H ANDLE & Directory from which to output a list Specifies the handle output by FILE.Open. \\
\hline \multirow[t]{5}{*}{Output} & xDone & BOOL & TRUE: Execution is completed. \\
\hline & xBusy & BOOL & TRUE: Execution of the FB is not completed. \\
\hline & xError & BOOL & TRUE: An error has occurred within the FB. \\
\hline & eError & FILE.ERRO R & \begin{tabular}{l}
An error ID is output. \\
Refer to "10.7.15 FILE.ERROR (Error ID)".
\end{tabular} \\
\hline & deDirEntry & FILE.FILE DIR_ENTR̄Y & Files and directories are output. \\
\hline
\end{tabular}

FILE_DIR_ENTRY (Structure)
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline sEntry & \begin{tabular}{l}
FILE.CAA.FILENAM \\
E
\end{tabular} & Directory or file name \\
\hline szSize & FILE.CAA.SIZE & File size \\
\hline xDirectory & BOOL & \begin{tabular}{l}
TRUE: Directory \\
FALSE: File
\end{tabular} \\
\hline xExclusive & BOOL & \begin{tabular}{l}
TRUE: Exclusive access mode \\
FALSE: Multiple access mode
\end{tabular} \\
\hline dtLastModification & DATE_AND_TIME & Last update date and time. \\
\hline
\end{tabular}

\subsection*{10.9 Clock Setting}

This section describes function blocks that are used to set the clock of the GM1 Controller. Enter a function block name by using the RTCLK (namespace).

\subsection*{10.9.1 SYS_GetTime (Get Time)}

This is a function block (FB) that gets the current local time
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xExecute & BOOL & \begin{tabular}{l}
TRUE: Active \\
FALSE: Stop
\end{tabular} \\
\hline \multirow{5}{*}{ Output } & xDone & BOOL & TRUE: The function block is normally ended. \\
\cline { 2 - 4 } & xBusy & BOOL & TRUE: The function block is active. \\
\cline { 2 - 4 } & xError & BOOL & TRUE: An error has occurred. \\
\cline { 2 - 4 } & eError & ERROR & Details of error contents \\
\cline { 2 - 4 } & \begin{tabular}{l}
dtDateAndTi \\
me
\end{tabular} & DT & Current local time \\
\hline
\end{tabular}

\subsection*{10.9.2 SYS_SetTime (Set Time)}

This is a function block (FB) that sets the current local time.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xExecute & BOOL & TRUE: Active \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{} & & & FALSE: Stop \\
\cline { 2 - 4 } & \begin{tabular}{l}
dtDateAndTi \\
me
\end{tabular} & DT & Current time to be set \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & TRUE: The function block is normally ended. \\
\cline { 2 - 4 } & xBusy & BOOL & TRUE: The function block is active. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred. \\
\cline { 2 - 4 } & eError & ERROR & Details of error contents \\
\hline
\end{tabular}

\subsection*{10.9.3 SYS_GetTimezone (Get Time Zone Information)}

This is a function block (FB) that gets the time zone information.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & xExecute & BOOL & \begin{tabular}{l}
TRUE: Active \\
FALSE: Stop
\end{tabular} \\
\hline \multirow{5}{*}{ Output } & xDone & BOOL & TRUE: The function block is normally ended. \\
\cline { 2 - 5 } & xBusy & BOOL & TRUE: The function block is active. \\
\cline { 2 - 5 } & xError & BOOL & TRUE: An error has occurred. \\
\cline { 2 - 5 } & eError & ERROR & Details of error contents \\
\cline { 2 - 4 } & iTimezone & INT & Time zone information (Offset from UTC) \\
\hline
\end{tabular}

\subsection*{10.9.4 SYS_SetTimezone (Set Time Zone Information)}

This is a function block (FB) that sets the time zone information.

\subsection*{10.9 Clock Setting}
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & xExecute & BOOL & \begin{tabular}{l}
TRUE: Active \\
FALSE: Stop
\end{tabular} \\
\cline { 2 - 4 } & iTimezone & INT & Time zone information (Offset from UTC) \\
\hline \multirow{4}{*}{ Output } & xDone & BOOL & TRUE: The function block is normally ended. \\
\cline { 2 - 4 } & xBusy & BOOL & TRUE: The function block is active. \\
\cline { 2 - 4 } & xError & BOOL & TRUE: An error has occurred. \\
\cline { 2 - 4 } & eError & ERROR & Details of error contents \\
\hline
\end{tabular}

\subsection*{10.9.5 SYS_DateConcat (Convert from UINT Type to DATE Type)}

This is a function (FUN) that converts a UINT type date to a DATE type.
- Icon

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & uiYear & UINT & Year: 1970 to 2099 \\
\cline { 2 - 5 } & uiMonth & UINT & Month: 1 to 12 \\
\cline { 2 - 5 } & uiDay & UINT & Day: 1 to 31 \\
\cline { 2 - 5 } & peError & \begin{tabular}{l}
POINTER \\
TO ERROR
\end{tabular} & Pointer to the error information storage location \\
\hline Output & \begin{tabular}{l}
SYS_DateC \\
oncat
\end{tabular} & DATE & Return value: Returns DT\#1970-01-01 if the input value is invalid. \\
\hline
\end{tabular}

\subsection*{10.9.6 SYS_DateSplit (Convert from DATE Type to UINT Type)}

This is a function (FUN) that converts a DATE type date to a UINT type.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{4}{*}{ Input } & datDate & DATE & Date data \\
\cline { 2 - 5 } & puiYear & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the year data storage location: 1970 to 2099 \\
\cline { 2 - 5 } & puiMonth & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the month data storage location: 1 to 12 \\
\cline { 2 - 5 } & puiDay & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the day data storage location: 1 to 31 \\
\hline \multirow{3}{*}{ Output } & \begin{tabular}{l}
SYS_DateS \\
plit
\end{tabular} & ERROR & Return value: Error information \\
\hline
\end{tabular}

\subsection*{10.9.7 SYS_DTConcat (Convert from UINT Type to DT Type)}

This is a function (FUN) that converts a UINT type date and time to a DT type.

\section*{- Icon}

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Type & Description \\
\hline \multirow{3}{*}{ Input } & uiYear & UINT & Year: 1970 to 2099 \\
\cline { 2 - 5 } & uiMonth & UINT & Month: 1 to 12 \\
\cline { 2 - 5 } & uiDay & UINT & Day: 1 to 31 \\
\hline
\end{tabular}

\subsection*{10.9 Clock Setting}
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Type & Description \\
\hline \multirow{4}{*}{} & uiHour & UINT & Hour: 0 to 23 \\
\cline { 2 - 4 } & uiMinute & UINT & Minute: 0 to 59 \\
\cline { 2 - 5 } & uiSecond & UINT & Second: 0 to 59 \\
\cline { 2 - 5 } & peError & \begin{tabular}{l}
POINTER \\
TO ERROR
\end{tabular} & Pointer to the error information \\
\hline Output & \begin{tabular}{l}
SYS_DTCo \\
ncat
\end{tabular} & DT & \begin{tabular}{l}
Return value: Returns DT\#1970-01-01-00:00:00 if the input value is \\
invalid.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.9.8 SYS_DTSplit (Convert from UINT Type to DT Type)}

This is a function (FUN) that converts a UINT type date and time to a DT type.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & \begin{tabular}{l}
dtDateAndTi \\
me
\end{tabular} & DT & Date and time data \\
\cline { 2 - 5 } & uiYear & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the year data storage location: 1970 to 2099 \\
\cline { 2 - 5 } & uiMonth & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the month data storage location: 1 to 12 \\
\cline { 2 - 5 } & uiDay & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the day data storage location: 1 to 31 \\
\cline { 2 - 5 } & uiHour & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the hour data storage location: 0 to 23 \\
\cline { 2 - 4 } & uiMinute & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the minute data storage location: 0 to 59 \\
\cline { 2 - 4 } & uiSecond & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the second data storage location: 0 to 59 \\
\hline Output & \begin{tabular}{l}
SYS_DTSpli \\
t
\end{tabular} & ERROR & Return value: Error information \\
\hline
\end{tabular}

\subsection*{10.9.9 SYS_GetDayOfWeek (Get Day of the Week)}

This is a function (FUN) that gets the day of the week from the DATE type date.
- Icon

\section*{- Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{3}{*}{ Input } & dtDate & DATE & Date data \\
\cline { 2 - 5 } & peError & \begin{tabular}{l}
POINTER \\
TO ERROR
\end{tabular} & Pointer to the error information \\
\hline Output & \begin{tabular}{l}
SYS_GetDa \\
yOfWeek
\end{tabular} & \begin{tabular}{l}
RTCLK.WE \\
EKDAY
\end{tabular} & Return value: Day of the week \\
\hline
\end{tabular}

\section*{RTCLK.WEEKDAY (Day of the week)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline SUNDAY & \(16 \# 00\) & Sunday \\
\hline MONDAY & \(16 \# 01\) & Monday \\
\hline TUESDAY & \(16 \# 02\) & Tuesday \\
\hline WEDNESDAY & \(16 \# 03\) & Wednesday \\
\hline THURSDAY & \(16 \# 04\) & Thursday \\
\hline FRIDAY & \(16 \# 05\) & Friday \\
\hline SATURDAY & \(16 \# 06\) & Saturday \\
\hline
\end{tabular}

\subsection*{10.9.10 SYS_TODConcat (Convert from UINT Type to TOD Type)}

This is a function (FUN) that converts a UINT type time with milliseconds to a TOD type.
- Icon

\subsection*{10.9 Clock Setting}

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & uiHour & UINT & Hour: 0 to 23 \\
\cline { 2 - 5 } & uiMinute & UINT & Minute: 0 to 59 \\
\cline { 2 - 4 } & uiSecond & UINT & Second: 0 to 59 \\
\cline { 2 - 4 } & \begin{tabular}{l}
uiMillisecon \\
d
\end{tabular} & UINT & Millisecond: 0 to 999 \\
\cline { 2 - 4 } & peError & \begin{tabular}{l}
POINTER \\
TO ERROR
\end{tabular} & Pointer to the error information \\
\hline Output & \begin{tabular}{l}
SYS_TODC \\
oncat
\end{tabular} & TOD & \begin{tabular}{l}
Return value \\
Returns TOD\#00:00:00 if the input value is invalid.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.9.11 SYS_TODSplit (Convert from TOD Type to UINT Type)}

This is a function (FUN) that converts a TOD type time with milliseconds to a UINT type.
- Icon

\section*{Parameter}
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline \multirow{5}{*}{ Input } & todTime & TOD & Time (hour, minute, second) with millisecond data \\
\cline { 2 - 5 } & puiHour & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the hour data storage location: 0 to 23 \\
\cline { 2 - 5 } & puiMinute & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the minute data storage location: 0 to 59 \\
\cline { 2 - 4 } & puiSecond & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the second data storage location: 0 to 59 \\
\cline { 2 - 4 } & \begin{tabular}{l}
puiMilliseco \\
nd
\end{tabular} & \begin{tabular}{l}
POINTER \\
TO UINT
\end{tabular} & Pointer to the millisecond data storage location: 0 to 999 \\
\hline Output & \begin{tabular}{l}
SYS_TODS \\
plit
\end{tabular} & \begin{tabular}{l}
ERROR
\end{tabular} & Return value: Error information \\
\hline
\end{tabular}

\subsection*{10.9.12 ERROR (Clock Instruction Error Code)}
\begin{tabular}{|l|l|l|}
\hline Name & Value & Description \\
\hline NO_ERROR & 0 & No error \\
\hline FIRST_ERROR & 5700 & First error unique to the library \\
\hline TIME_OUT & 5751 & The time limit is exceeded. \\
\hline NOT_AVAILABLE & 5752 & Not available. \\
\hline INPUT_VALID & 5753 & Invalid input value \\
\hline DTU_ERROR_UNKNOWN & 5754 & Unknown error \\
\hline DTU_WRONG_PARAMETER & 5755 & Wrong parameter \\
\hline DTU_TZI_NOT_SET & 5756 & The time zone information has not been initialized. \\
\hline FIRST_MF & 5770 & First error unique to the manufacturer \\
\hline LAST_ERROR & 5799 & Last error unique to the library \\
\hline
\end{tabular}

\subsection*{10.10 System Data}

\subsection*{10.10.1 SYS_GetSystemError (Get System Error)}

This is a function block that gets the information of a system error that has occurred in the GM1 Controller.
- Icon

\section*{SYS_GetSystemError}

- Parameter
\begin{tabular}{|l|l|l|l|}
\hline Scope & Name & Type & Description \\
\hline Input & None & & \\
\hline \multirow{2}{*}{ Output } & Error & BOOL & TRUE: An error has occurred. \\
\cline { 2 - 4 } & Errorld & UDINT & Error ID of the error that has occurred \\
\hline
\end{tabular}

\section*{1 Info.}
- For the error ID, refer to the GM1 Controller RTEX User's Manual (Operation Edition).

\section*{11 Reference Information}
11.1 Motion Errors (SMC_ERROR Type) 11-2
11.1.1 Error Check Method 11-2
11.1.2 SMC ERROR 11-3
11.2 RTEX communication error 11-11
11.2.1 RTEX Error ID 11-11
11.2.2 Alarm Codes 11-14
11.2.3 Warning Codes 11-18
11.3 List of AMP Parameters 11-21
11.3.1 Class 0: Basic Setting 11-21
11.3.2 Class 1: Gain Adjustment 11-21
11.3.3 Class 2: Vibration Suppression Function 11-22
11.3.4 Class 3: Speed, Torque Control, Full-closed Control 11-23
11.3.5 Class 4: I/O Monitor Setting 11-24
11.3.6 Class 5: Enhancing Setting 11-25
11.3.7 Class 6: Special Setting 1 11-27
11.3.8 Class 7: Special Setting 2 11-29
11.3.9 Class 8: Special Setting 3 11-31
11.4 Monitor Commands 11-32

\subsection*{11.1 Motion Errors (SMC_ERROR Type)}

\subsection*{11.1 Motion Errors (SMC_ERROR Type)}

This section describes errors that are output in motion control instructions and their contents. Motion control errors are defined in SMC_ERROR.

\subsection*{11.1.1 Error Check Method}

This section describes errors that are output in motion control instructions and their contents. Motion control errors are defined in SMC_ERROR.

\section*{- Error check method}

With a function block that has an output Error and output ErrorID, it is possible to check that an error has occurred.
The following shows an example of an error that has occurred when the MC_MoveVelocity function block is executed.
"TRUE" is output to the output Error and an error is output to the output ErrorID.

The error name can be checked by double-clicking the output ErrorID.
An error name defined in the enumeration type SMC_ERROR is displayed in the "Current value" field in the "Presetting values" dialog box.
Double-clicking \({ }^{[\mathrm{BMC}} \mathrm{NV}\) _INV \(]\) in the above execution example displays the following dialog box where error name "SMC_MV_INVALID_ACCDEC_VALUES" can be checked.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Prepare Value} \\
\hline Expression & MC_MoveVelocity_0.ErrorID & \\
\hline Type & SMC_ERROR & \\
\hline Current value & SMC_MV_INVALID_ACCDEC_VALUES & \\
\hline \begin{tabular}{l}
What do you
Prepare \\
SMC_N
Remove
Release
Release before
\end{tabular} & \begin{tabular}{l}
ant to do? \\
a new value for the next write or force operation \\
_ERROR \\
preparation with a value. \\
the force, without modifying the value. \\
the force and restore the variable to the value it had forcing it.
\end{tabular} & \\
\hline & OK & Cancel \\
\hline
\end{tabular}

When an error occurs, the value of the error that has occurred (SMC_ERROR) is also recorded in hexadecimal number on the "Log" screen of the device editor.
The following example shows a record when an error
("SMC_MV_INVALID_ACCDEC_VALUES") with an error value of 12D (301 in decimal) has occurred.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Applications} & Severity & Time Stamp & Description & Component \\
\hline & * & 10,11.2020 12:55:10.409 & Eroinstance -Pricip Appication.MC._PRG.MC. Movevelocty_O & Sofmoton \\
\hline & - & 10.11.2020 12:55:10.499 & Fierror Dive=0 120 , vald veboty, acceleraton, deceleration or jerk values & Sofimoton \\
\hline Log & - & 20.11.2020 12:55:04.375 & Acpicaton [Acolcawri] deried to start event & Onotep \\
\hline
\end{tabular}

\subsection*{11.1.2 SMC_ERROR}
\begin{tabular}{|l|l|l|}
\hline Error name & \begin{tabular}{l}
Valu \\
e
\end{tabular} & Description \\
\hline SMC_NO_ERROR & 0 & No error \\
\hline SMC_DI_GENERAL_COMMUNICATION_ERROR & 1 & \begin{tabular}{l}
Communication error \\
Communication disconnection or another \\
communication problem occurred.
\end{tabular} \\
\hline SMC_DI_AXIS_ERROR & 2 & \begin{tabular}{l}
Axis error \\
Amplifier alarm or another axis problem occurred.
\end{tabular} \\
\hline SMC_DI_FIELDBUS_LOST_SYNCRONICITY & 3 & The fieldbus lost synchronicity. \\
\hline SMC_DI_SWLIMITS_EXCEEDED & 10 & The software limit has been exceeded. \\
\hline SMC_DI_HWLIMITS_EXCEEDED & 11 & The hardware end switch is active. \\
\hline
\end{tabular}

\subsection*{11.1 Motion Errors (SMC_ERROR Type)}
\begin{tabular}{|c|c|c|}
\hline Error name & \[
\begin{aligned}
& \text { Valu } \\
& \text { e }
\end{aligned}
\] & Description \\
\hline SMC_DI_LINEAR_AXIS_OUTOFRANGE & 12 & An overflow occurred in the linear axis. \\
\hline SMC_DI_HALT_OR_QUICKSTOP_NOT_SUPPO
RTED & 13 & The drive state is set to Halt or the Quickstop is unsupported. \\
\hline SMC_DI_VOLTAGE_DISABLED & 14 & No power is supplied to the drive. \\
\hline SMC_DI_IRREGULAR_ACTPOSITION & 15 & This error is not used. \\
\hline SMC_DI_POSITIONLAGERROR & 16 & \begin{tabular}{l}
Position lag error \\
The difference between the commanded position and actual position has exceeded the specified limit when position lag monitoring is active.
\end{tabular} \\
\hline SMC_DI_HOMING_ERROR & 17 & Home return error \\
\hline SMC_REGULATOR_OR_START_NOT_SET & 20 & \begin{tabular}{l}
Either the controller is disabled or the brake has been applied. \\
Servo OFF or another similar problem occurred during axis movement.
\end{tabular} \\
\hline SMC_WRONG_CONTROLLER_MODE & 21 & The executed function block is set to unsupported controller mode (SMC_SetControllerMode). \\
\hline SMC_INVALID_ACTION_FOR_LOGICAL & 25 & Invalid operation was performed on the logical axis. \\
\hline SMC_FB_WASNT_CALLED_DURING_MOTION & 30 & \begin{tabular}{l}
The function block was not called on the POU while the motion instruction was being executed ("Busy"). \\
The operation was stopped while the motion instruction was being executed ("Busy").
\end{tabular} \\
\hline SMC_AXIS_IS_NO_AXIS_REF & 31 & The type of the AXIS_REF type variable is different. \\
\hline SMC_AXIS_REF_CHANGED_DURING_OPERATI ON & 32 & The AXIS_REF variable was changed during operation. \\
\hline SMC_FB_ACTIVE_AXIS_DISABLED & 33 & The axis became disabled (MC_Power.bRegulatorOn) during movement. \\
\hline SMC_AXIS_NOT_READY_FOR_MOTION & 34 & The axis cannot execute a motion instruction (an attempt was made to execute a motion instruction with MC_Stop enabled, for example). \\
\hline SMC_AXIS_ERROR_DURING_MOTION & 35 & An error (such as amplifier alarm) occurred during motion operation. \\
\hline SMC_VD_MAX_VELOCITY_EXCEEDED & 40 & The maximum velocity (fMaxVelocity) was exceeded. \\
\hline SMC_VD_MAX_ACCELERATION_EXCEEDED & 41 & The maximum acceleration (fMaxAccleration) was exceeded. \\
\hline SMC_VD_MAX_DECELERATION_EXCEEDED & 42 & The maximum deceleration (fMaxDeceleration) was exceeded. \\
\hline SMC_3SH_INVALID_VELACC_VALUES & 50 & Either an invalid velocity or acceleration was specified. \\
\hline SMC_3SH_MODE_NEEDS_HWLIMIT & 51 & For safety reasons, a request is made to invoke the mode in which the end switch is used. \\
\hline SMC_FRC_NO_FREE_HANDLE & 60 & There is no file open handle. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Error name & \begin{tabular}{l}
Valu \\
e
\end{tabular} & Description \\
\hline SMC_MAC_INITIALIZATION_FAILED & 65 & \begin{tabular}{l}
SMC_MultiAcyclicCommunicator initialization \\
failed.
\end{tabular} \\
\hline SMC_MAC_INVALID_TASK_HANDLE & 66 & There is an invalid handle for the axis. \\
\hline SMC_MAC_TOO_MANY_TASKS & 67 & \begin{tabular}{l}
There are too many tasks that use an axis \\
generating SDO.
\end{tabular} \\
\hline SMC_MAC_ATOMIC_ADD_FAILED & 68 & An attempt to add Atomic failed. \\
\hline SMC_SDO_INVALID_DATALENGTH & 69 & \begin{tabular}{l}
An invalid data length (> 4) occurred due to SDO \\
reading.
\end{tabular} \\
\hline SMC_SCM_NOT_SUPPORTED & 70 & \begin{tabular}{l}
An invalid controller mode was set for \\
SMC_SetControllerMode.
\end{tabular} \\
\hline SMC_SCM_AXIS_IN_WRONG_STATE & 130 & \begin{tabular}{l}
The controller mode cannot be changed in the \\
current axis state (an attempt was made to execute \\
SMC_SetControllerMode with MC_Stop enabled, \\
for example).
\end{tabular} \\
\hline SMC_SCM_INTERRUPTED & 72 & \begin{tabular}{l}
SMC_SetControllerMode was interrupted by \\
MC_Stop or ErrorStop.
\end{tabular} \\
\hline SMC_ST_WRONG_CONTROLLER_MODE & 75 & \begin{tabular}{l}
The motion instruction was executed in an \\
incorrect controller mode.
\end{tabular} \\
\hline SMC_RP_REQUESTING_ERROR & 120 & 122 \\
\hline SMC_RAG_ERP_DRIVE_PARAMETER_NOT_MAPPED & 120 & \begin{tabular}{l}
An error occurred in communication with the drive. \\
SM error occurred when the axis group was started \\
up.
\end{tabular} \\
\hline SMerecuted when there was no function block error, \\
for example).
\end{tabular}

\subsection*{11.1 Motion Errors (SMC_ERROR Type)}
\(\left.\left.\begin{array}{|l|l|l|}\hline \text { Error name } & \begin{array}{l}\text { Valu } \\
\text { e }\end{array} & \text { Description } \\
\hline \text { SMC_RP_PARAM_CONVERSION_ERROR } & 133 & \begin{array}{l}\text { Conversion of drive parameter values failed. } \\
\text { Soft motion parameters are undefined. }\end{array} \\
\hline \text { SMC_WP_PARAM_INVALID } & 140 & \begin{array}{l}\text { The parameter number is undefined or write } \\
\text { operations are inhibited. }\end{array} \\
\hline \text { SMC_WP_SENDING_ERROR } & 141 & \text { Refer to the error number for WriteDriveParameter. } \\
\hline \text { SMC_WP_DRIVE_PARAMETER_NOT_MAPPED } & 142 & \text { Parameters are undefined for the drive. } \\
\hline \text { SMC_WP_PARAM_CONVERSION_ERROR } & 143 & \begin{array}{l}\text { Conversion of drive parameter values failed. } \\
\text { Soft motion parameters are undefined. }\end{array} \\
\hline \text { SMC_H_AXIS_WASNT_STANDSTILL } & 170 & \text { The axis is not in a standstill state. } \\
\hline \text { SMC_H_AXIS_DIDNT_START_HOMING } & 171 & \text { An error occurred when home return was started. } \\
\hline \text { SMC_H_AXIS_DIDNT_ANSWER } & 172 & \begin{array}{l}\text { An error occurred when home return was started. }\end{array} \\
\hline \text { SMC_H_ERROR_WHEN_STOPPING } & 277 & \begin{array}{l}\text { An error occurred after the axis stopped in home } \\
\text { return mode. It is possible that deceleration was } \\
\text { not set. }\end{array} \\
\hline \text { SMC_H_AXIS_IN_ERRORSTOP } & 174 & \begin{array}{l}\text { The drive is in the ErrorStop state. } \\
\text { Home return cannot be executed. }\end{array} \\
\hline \text { SMC_MSI_INVALID_DIRECTION } & \begin{array}{l}\text { There is an error in the specified direction } \\
\text { ("Direction"). }\end{array} \\
\hline \text { SMC_MSI_INVALID_VELACC_VALUES same instance of MC_MoveSuperImposed } \\
\text { was called more than once in a single cycle. }\end{array}\right\} \begin{array}{l}\text { Sither an invalid velocity or acceleration was } \\
\text { specified. }\end{array}\right\}\)\begin{tabular}{l}
UndefiD_EXECUTION_ORDER
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Error name & Valu e & Description \\
\hline SMC_LOGICAL_NO_REAL_AXIS & 300 & Unused error \\
\hline SMC_MV_INVALID_ACCDEC_VALUES & 301 & Either an invalid velocity or acceleration was specified. \\
\hline SMC_MV_DIRECTION_NOT_APPLICABLE & 302 & "shortest" or "fastest" cannot be applied to the direction ("Direction"). \\
\hline SMC_PP_ARRAYSIZE & 325 & There is an error in the specified array size. \\
\hline SMC_PP_STEPOMS & 326 & The step time is 0s. \\
\hline SMC_VP_ARRAYSIZE & 350 & There is an error in the specified array size. \\
\hline SMC_VP_STEPOMS & 351 & The step time is 0s. \\
\hline SMC_AP_ARRAYSIZE & 375 & There is an error in the specified array size. \\
\hline SMC_AP_STEPOMS & 376 & The step time is 0 s. \\
\hline SMC_TP_TRIGGEROCCUPIED & 400 & The trigger is already enabled. \\
\hline SMC_TP_COULDNT_SET_WINDOW & 401 & The drive does not support the window function. \\
\hline SMC_TP_COMM_ERROR & 402 & Communication error \\
\hline SMC_AT_TRIGGERNOTOCCUPIED & 410 & The trigger is already disabled. \\
\hline SMC_MCR_INVALID_VELACC_VALUES & 426 & Either an invalid velocity or acceleration was specified. \\
\hline SMC_MCR_INVALID_DIRECTION & 427 & An invalid direction was specified. \\
\hline SMC_MCA_INVALID_VELACC_VALUES & 451 & Either an invalid velocity or acceleration was specified. \\
\hline SMC_MCA_INVALID_DIRECTION & 452 & An invalid direction was specified. \\
\hline SMC_MCA_DIRECTION_NOT_APPLICABLE & 453 & "fastest" cannot be applied to the direction ("Direction"). \\
\hline SMC_SDL_INVALID_AXIS_STATE & 475 & Function block "SMC_ChangeDynamicLimits" was executed in a state other than "Standstill" or "Power_off". \\
\hline SMC_SDL_INVALID_VELACC_VALUES & 476 & An invalid velocity, acceleration, deceleration, or jerk was specified. \\
\hline SMC_CR_NO_TAPPETS_IN_CAM & 600 & The cam is not equipped with a tappet. \\
\hline SMC_CR_TOO_MANY_TAPPETS & 601 & The tappet group ID exceeds MAX_NUM_TAPPETS. \\
\hline SMC_CR_MORE_THAN_32_ACCESSES & 602 & There are 32 or more accesses to one cam. \\
\hline SMC_CI_NO_CAM_SELECTED & 625 & \begin{tabular}{l}
No cam is selected. \\
It is possible that the correct cam table is not set in the CamTableID parameter of MC_CamIn.
\end{tabular} \\
\hline SMC_CI_MASTER_OUT_OF_SCALE & 626 & The current commanded position on the master axis is outside the range of the cam table. \\
\hline SMC_CI_RAMPIN_NEEDS_VELACC_VALUES & 627 & A velocity and acceleration must be specified when StartMode is set to ramp_in. \\
\hline SMC_CI_SCALING_INCORRECT & 628 & The scaling variables (fEditor, TableMasterMin, and Max) are incorrect. \\
\hline SMC_CI_TOO_MANY_TAPPETS_PER_CYCLE & 629 & The number of tappet outputs is too many to be enabled in one cycle. \\
\hline
\end{tabular}

\subsection*{11.1 Motion Errors (SMC_ERROR Type)}
\begin{tabular}{|l|l|l|}
\hline Error name & \begin{tabular}{l}
Valu \\
e
\end{tabular} & Description \\
\hline SMC_CB_NOT_IMPLEMENTED & 640 & \begin{tabular}{l}
The function block for cam format is not \\
implemented.
\end{tabular} \\
\hline SMC_GI_RATIO_DENOM & 675 & \begin{tabular}{l}
RatioDenominator (denominator of the gear ratio) \\
is set to 0.
\end{tabular} \\
\hline SMC_GI_INVALID_ACC & 676 & The value specified in "Acceleration" is invalid. \\
\hline SMC_GI_INVALID_DEC & 678 & \begin{tabular}{l}
The value specified in "Deceleration" is invalid. \\
changed without permission.
\end{tabular} \\
\hline SMC_GI_MASTER_REGULATOR_CHANGED & 679 & The value specified in "Jerk" is invalid. \\
\hline SMC_GI_INVALID_JERK & 725 & \begin{tabular}{l}
The specified velocity, acceleration, or deceleration \\
were invalid.
\end{tabular} \\
\hline SMC_PH_INVALID_VELACCDEC & 726 & fPositionPeriod for the rotation axis is set to 0. \\
\hline SMC_PH_ROTARYAXIS_PERIODO & 832 & \begin{tabular}{l}
The cam type is not an MC_CAM_REF structure. \\
Internal error: Failed in calculating the secondary \\
path
\end{tabular} \\
\hline SMC_NO_CAM_REF_TYPE & 751 & \begin{tabular}{l}
The master axis area (xStart and xEnd) of the cam \\
table is outside the curve data range.
\end{tabular} \\
\hline \begin{tabular}{l}
SMC_CAM_TABLE_DOES_NOT_COVER_MAST \\
ER_SCALE
\end{tabular} & 828 & \begin{tabular}{l}
Internal error: Failed in calculating the secondary \\
path
\end{tabular} \\
\hline SMC_CAM_TABLE_EMPTY_MASTER_RANGE & 752 & \begin{tabular}{l}
The cam data table is empty.
\end{tabular} \\
\hline SMC_CAM_TABLE_INVALID_MASTER_MINMAX & 753 & \begin{tabular}{l}
The maximum value and minimum value of the \\
master axis in the cam data are invalid.
\end{tabular} \\
path \\
SMC_TG_INT: Failed in calculating the secondary \\
path
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Error name & Valu & Description \\
\hline SMC_SRT_NOT_STANDSTILL_OR_POWEROFF & 850 & Execution is possible only in the standstill or power_off state. \\
\hline SMC_SRT_INVALID_RAMPTYPE & 851 & The value specified in RampType is invalid. \\
\hline SMC_SMT_NOT_STANDSTILL_OR_POWEROFF & 852 & Execution is possible only in the standstill or power_off state. \\
\hline SMC_SMT_INVALID_MOVEMENTTYPE_OR_ POSİTIONP̄ERIOD & 853 & The value specified in MovementType or PositionPeriod is invalid. \\
\hline SMC_SMT_AXIS_NOT_VIRTUAL & 854 & The function block is valid only for the virtual axis. \\
\hline SMC_NO_LICENSE & 1000 & License error \\
\hline SMC_INT_VEL_ZERO & 1001 & Because Velocity is set to 0 , path processing cannot be performed. \\
\hline SMC_INT_NO_STOP_AT_END & 1002 & The final velocity of the path is other than 0 . \\
\hline SMC_INT_DATA_UNDERRUN & 1003 & GEOINFO-List was processed by Dataln, but the end of the list has not been reached. \\
\hline SMC_INT_VEL_NONZERO_AT_STOP & 1004 & The velocity at the time of stoppage is greater than 0. \\
\hline SMC_INT_TOO_MANY_RECURSIONS & 1005 & There are too many recursions of SMC_Interpolator. \\
\hline SMC_INT_NO_CHECKVELOCITIES & 1006 & SMC_CheckVelocities is not called by SMC_OUTQUEUE. \\
\hline SMC_INT_PATH_EXCEEDED & 1007 & Internal error or calculation error \\
\hline SMC_INT_VEL_ACC_DEC_ZERO & 1008 & The specified velocity and acceleration / deceleration are 0 or less. \\
\hline SMC_INT_DWIPOTIME_ZERO & 1009 & The motion task was called when dwlpoTime \(=0\). \\
\hline SMC_INT_JERK_NONPOSITIVE & 1010 & A negative value was set for "Jerk". \\
\hline SMC_INT_QPROF_DIVERGES & 1011 & \begin{tabular}{l}
Internal error \\
The calculation algorithm is incorrect.
\end{tabular} \\
\hline SMC_INT_INVLALID_VELOCITY_MODE & 1012 & The specified velocity mode is invalid. \\
\hline SMC_INT_TOO_MANY_AXES_INTERPOLATED & 1013 & The maximum allowable number of axes for interpolation has been exceeded. \\
\hline SMC_INT_DEGENERATE_SEGMENT & 1014 & \\
\hline SMC_INT2DIR_BUFFER_TOO_SMALL & 1050 & \\
\hline SMC_INT2DIR_PATH_FITS_NOT_IN_QUEUE & 1051 & \\
\hline SMC_XINT_INVALID_DIRECTION & 1070 & \\
\hline SMC_XINT_NOINTERSECTION & 1071 & \\
\hline SMC_WAR_INT_OUTQUEUE_TOO_SMALL & 1080 & \\
\hline SMC_WAR_END_VELOCITIES_INCORRECT & 1081 & The specified final velocity is incorrect. \\
\hline SMC_CV_ACC_DEC_VEL_NONPOSITIVE & 1100 & Negative values are specified for the velocity and acceleration/deceleration. \\
\hline SMC_CA_INVALID_ACCDEC_VALUES & 1120 & Negative values are specified for fGapVelocity, fGapAcceleration, and fGapDeceleration. \\
\hline SMC_DEC_ACC_TOO_LITTLE & 1200 & The specified acceleration is unacceptable. \\
\hline
\end{tabular}

\subsection*{11.1 Motion Errors (SMC_ERROR Type)}
\begin{tabular}{|c|c|c|}
\hline Error name & \begin{tabular}{l}
Valu \\
e
\end{tabular} & Description \\
\hline SMC_DEC_RET_TOO_LITTLE & 1201 & The specified deceleration is unacceptable. \\
\hline SMC_DEC_OUTQUEUE_RAN_EMPTY & 1202 & \begin{tabular}{l}
Data underrun \\
The queue was read, but it was empty.
\end{tabular} \\
\hline SMC_DEC_JUMP_TO_UNKNOWN_LINE & 1203 & Because the line number is unknown, the cursor cannot jump to the line. \\
\hline SMC_DEC_INVALID_SYNTAX & 1204 & The syntax is invalid. \\
\hline SMC_DEC_3DMODE_OBJECT_NOT_SUPPORT ED & 1205 & The object is not supported in 3D mode. \\
\hline SMC_DEC_NEGATIVE_PERIOD & 1206 & A negative value is specified for the period during which an additional axis is disabled. \\
\hline SMC_DEC_DIMENSIONS_EXCLUSIVE_AU & 1207 & Both axis \(A\) and axis \(U\) are not always interpolated. PA and PU are mutually exclusive. \\
\hline SMC_DEC_DIMENSIONS_EXCLUSIVE_BV & 1208 & Both axis B and axis V are not always interpolated. \(P B\) and \(P V\) are mutually exclusive. \\
\hline SMC_DEC_DIMENSIONS_EXCLUSIVE_CW & 1209 & \begin{tabular}{l}
Both axis C and axis W are not always interpolated. \\
PC and PW are mutually exclusive.
\end{tabular} \\
\hline SMC_IPR_TOO_SMALL_BUFFER & 1259 & The buffer size specified for OutOueue is too small. \\
\hline SMC_GCV_BUFFER_TOO_SMALL & 1300 & \\
\hline SMC_GCV_BUFFER_WRONG_TYPE & 1301 & \\
\hline SMC_GCV_UNKNOWN_IPO_LINE & 1302 & \\
\hline SMC_NO_CNC_REF_TYPE & 1500 & \\
\hline SMC_NO_OUTQUEUE_TYPE & 1501 & The specified pointer is not SMC_OUTQUEUE. \\
\hline SMC_GEOINFO_BUFFER_MISALIGNED & 1502 & The buffer segments aligned by four-byte boundaries are not used by pbyBuffer. \\
\hline SMC_3D_MODE_NOT_SUPPORTED & 1600 & The FB functions only with 2D paths. \\
\hline
\end{tabular}

\subsection*{11.2 RTEX communication error}

\subsection*{11.2.1 RTEX Error ID}

\section*{- WARNING_CODE (Union type)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline uiWarningCode & UINT & Warning code \\
\hline tWarningCodeMember & \begin{tabular}{l}
ALARM_WARNING_C \\
ODES
\end{tabular} & \begin{tabular}{l}
Main code (warning number) and sub-code (0) of the \\
warning code
\end{tabular} \\
\hline
\end{tabular}

List of RTEX Error IDs
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Category } & \begin{tabular}{c}
Error_Code / \\
Sub_Error_Cod \\
e
\end{tabular} & \multicolumn{1}{c|}{ Cause } \\
\hline \begin{tabular}{l}
Command \\
header related
\end{tabular} & 0011 h & - Mismatched node address (MAC-ID)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Category & Error_Code / Sub_Error_Cod e & Cause \\
\hline \multirow[t]{3}{*}{} & 0043h & - External scale error clear command is executed when not in full-closed control mode or when no external scale error is detected. \\
\hline & 0045h & - In servo on state, reset command is executed in attribute C parameter validation mode. \\
\hline & 0046h & \begin{tabular}{l}
- After deceleration and stop according to the drive inhibit input (POT / NOT), direction command POT / NOT is applied. \\
- During deceleration according to the drive inhibit input (POT / NOT), a profile operation (except Type_Code \(=31 \mathrm{~h}, 32 \mathrm{~h}, 33 \mathrm{~h}, 34 \mathrm{~h}\), and 36 h) is started.
\end{tabular} \\
\hline \multirow[t]{10}{*}{Not executable 2 (related to home return)} & 0051h & \begin{tabular}{l}
- Multi-turn clearing of the home return command was executed while the encoder was in the incremental mode. \\
- Multi-turn clearing of the home return command was executed even when the single-turn absolute function was effective.
\end{tabular} \\
\hline & 0052h & \begin{tabular}{l}
- During cyclic position control (CP) (* including full-closed control) in absolute mode, Type_Code \(=1 \square \mathrm{~h}\) of the home return command (\(\square 4 \mathrm{~h}\)) has been executed. \\
- During profile position control (PP) (* including full-closed control) in absolute mode, profile home return has been executed.
\end{tabular} \\
\hline & 0053h & - During cyclic position control (CP) (* including full-closed control) in absolute mode, actual position set / command position set (Type_Code \(=21 \mathrm{~h}, 22 \mathrm{~h}\)) of the home return command (\(\square 4 \mathrm{~h}\)) have been executed. \\
\hline & 0055h & - Multi-turn clearing of the home return command is executed while in the full-closed control mode. \\
\hline & 0056h & - Multi-turn clearing of the home return command is executed while in the servo-on condition. \\
\hline & 0057h & - Type_Code = 1םh of the home return command is executed while in the servo-off state. \\
\hline & 0058h & \begin{tabular}{l}
- While the external input is not assigned to the latch correction terminal, Type_Code is executed by using the external input as a trigger. \\
- Started the latch mode with a stop function operated by the amplifier output signal as the trigger signal when Pr7.111 "Trigger signal assignment setting for the latch mode with a stop function" was set to 0 "Disabled".
\end{tabular} \\
\hline & 0059h & \begin{tabular}{l}
- Executed the home return command (\(\square 4 \mathrm{~h}\)) while the profile position latch positioning / profile home return (Type_Code \(=12 \mathrm{~h}, 13 \mathrm{~g}, 31 \mathrm{~h}, 32 \mathrm{~h}\), 33h, 34h, 36h) was operated. \\
- During profile positioning / profile continuous revolution (Type_Code = 10h, 11h, 20h), initialization mode (Type_Code = 1םh, 31h) of home return command (\(\square 4 \mathrm{~h}\)) has been executed.
\end{tabular} \\
\hline & 005Ah & - Z phase is set to latch trigger signal despite absolute external scale. \\
\hline & 005Bh & \begin{tabular}{l}
- Received the following commands in the virtual full-closed control mode. \\
- Home return command (\(\square 4 \mathrm{~h}\)) \\
- Profile position latch absolute positioning (12h) of the profile command (17h) \\
- Profile position latch absolute positioning (13h) of the profile command (17h) \\
- Profile home return (31 h to \(34 \mathrm{~h}, 36 \mathrm{~h}\)) of the profile command (17 h) \\
- Config command
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Category & Error_Code I Sub_Error_Cod e & Cause \\
\hline \multirow[t]{2}{*}{} & & \begin{tabular}{l}
- Received a command to change to the virtual full-closed control mode under the following conditions. \\
- While initialization mode of home return command (\(\square 4 \mathrm{~h}\)) was operated, latch mode was operated, or latch mode with stop function was operated \\
- Changed to a command other than command code (\(\square 4 \mathrm{~h}\)) after starting home return command (Type_Code: 51h to 53h) \\
- During a period from starting the latch to detecting the latch after starting home return command (Type_Code: 51h to 53h) \\
- While profile position latch absolute positioning (12h) of the profile command (17h) was operated \\
- While profile position latch absolute positioning (13h) of the profile command (17h) was operated \\
- While profile home return (31 h to \(34 \mathrm{~h}, 36 \mathrm{~h}\)) of the profile command (17h) was operated \\
- After starting profile command (12h, \(13 \mathrm{~h}, 31 \mathrm{~h}\) to \(34 \mathrm{~h}, 36 \mathrm{~h}\)), during the period from when a change was made to a command other than command code (17h) until the latch or home was detected \\
- While Config command was executed
\end{tabular} \\
\hline & 005Fh & \begin{tabular}{l}
- Latch mode with stop function (Type_Code = F1h) was used in a setting other than the cyclic position control (CP). \\
- Latch mode with stop function (Type_Code = F1h) was used in a setting other than the communication cycle of \(0.5 \mathrm{~ms} /\) command update cycle of 1.0 ms \\
- Latch mode with stop function (Type_Code = F1h) was used in a setting other than the electronic gear ratio of less than 1.
\end{tabular} \\
\hline \begin{tabular}{l}
Not executable 3 \\
(Related to hardware factor)
\end{tabular} & 0061h & - EEPROM writing is not permitted because of under voltage of the control power. \\
\hline \multirow[t]{5}{*}{Not executable 4 (in process)} & 0101h & - Not permitted to be accepted because the previous command is in process. \\
\hline & 0102h & - Command is not permitted to be accepted because the servo driver is accessing to the encoder now. \\
\hline & 0103h & - Command is not permitted to be accepted because the servo driver is accessing to the external scale now. \\
\hline & 0104h & - Type_Code has been changed while operating under profile position control (PP). \\
\hline & 0105h & - During execution of the PANATERM command (test run operation, FFT, Z phase search, pin assignment setting, or fit gain), received the RTEX command (reset command, home return command, or parameter command). \\
\hline Not executable 5 (access inhibited) & 0201h & \begin{tabular}{l}
- Command is not permitted to be accepted because parameter writing or writing to EEPROM is inhibited now. \\
- Write parameter command or write EEPROM command is issued while bit 0 of \(\operatorname{Pr} 7.23\) RTEX function expansion setup 2 is set at 1 .
\end{tabular} \\
\hline
\end{tabular}

\subsection*{11.2 RTEX communication error}

\subsection*{11.2.2 Alarm Codes}

\section*{ALARM_CODE (Union type)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline uiAlarmCode & UINT & Alarm code \\
\hline tAlarmCodeMember & \begin{tabular}{l}
ALARM_WARNING_C \\
ODES
\end{tabular} & Main code and sub-code of the alarm code \\
\hline
\end{tabular}

\section*{- List of alarm codes}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Error No.} & \multirow[t]{2}{*}{Alarm name} & \multicolumn{3}{|c|}{Attribute} \\
\hline Main & Sub & & History & Can be cleared & Emergency stop \({ }^{(N o t e ~ 6)}\) \\
\hline 11 & 0 & Control power supply undervoltage protection & & - & \\
\hline 12 & 0 & Over-voltage protection & \(\bigcirc\) & \(\bigcirc\) & \\
\hline \multirow[t]{2}{*}{13} & 0 & Main power supply undervoltage protection (Insufficient voltage between P and N) & & - & - \\
\hline & 1 & Main power supply undervoltage protection (AC interception detection) & & \(\bigcirc\) & \(\bigcirc\) \\
\hline \multirow[t]{2}{*}{14} & 0 & Over-current protection & \(\bigcirc\) & & \\
\hline & 1 & IPM error protection & \(\bigcirc\) & & \\
\hline \multirow[t]{2}{*}{15} & 0 & Overheat protection & \(\bigcirc\) & & \(\bigcirc\) \\
\hline & 1 & Encoder overheat error protection & - & & \(\bigcirc\) \\
\hline \multirow[t]{2}{*}{16} & 0 & Overload protection & \(\bigcirc\) & -(Note 1) & \\
\hline & 1 & Torque saturation error protection & \(\bigcirc\) & - & \\
\hline \multirow[t]{2}{*}{18} & 0 & Regenerative overload protection & \(\bigcirc\) & & \(\bigcirc\) \\
\hline & 1 & Regenerative transistor error protection & - & & \\
\hline \multirow[t]{2}{*}{21} & 0 & Encoder communication line breakage fault protection & - & & \\
\hline & 1 & Encoder communication error protection & \(\bigcirc\) & & \\
\hline 23 & 0 & Encoder communication data error protection & \(\bigcirc\) & & \\
\hline \multirow[t]{2}{*}{24} & 0 & Position deviation excess protection & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline & 1 & Speed deviation excess protection & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 25 & 0 & Hybrid deviation excess protection & \(\bigcirc\) & & \(\bigcirc\) \\
\hline \multirow[t]{2}{*}{26} & 0 & Overspeed protection & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline & 1 & 2nd overspeed protection & \(\bigcirc\) & \(\bigcirc\) & \\
\hline \multirow[t]{5}{*}{27} & 1 & Absolute clearing protection & \(\bigcirc\) & & \\
\hline & 4 & Command error protection & \(\bigcirc\) & & \(\bigcirc\) \\
\hline & 5 & Command generation error protection & \(\bigcirc\) & & \(\bigcirc\) \\
\hline & 6 & Operation command contention protection & \(\bigcirc\) & \(\bigcirc\) & \\
\hline & 7 & Position information initialization error protection & \(\bigcirc\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Error No.} & \multirow[t]{2}{*}{Alarm name} & \multicolumn{3}{|c|}{Attribute} \\
\hline Main & Sub & & History & Can be cleared & Emergency stop(Note 6) \\
\hline 28 & 0 & Pulse regeneration limit protection & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline \multirow[t]{2}{*}{29} & 1 & Counter overflow protection 1 & \(\bigcirc\) & & \\
\hline & 2 & Counter overflow protection 2 & \(\bigcirc\) & & \\
\hline \multirow[t]{2}{*}{31} & 0 & Safety function error protection 1 & \(\bigcirc\) & & \\
\hline & 2 & Safety function error protection 2 & \(\bigcirc\) & & \\
\hline \multirow[t]{7}{*}{33} & 0 & Input duplicated allocation error-1 protection & \(\bigcirc\) & & \\
\hline & 1 & Input duplicated allocation error-2 protection & - & & \\
\hline & 2 & Input function number error-1 protection & \(\bigcirc\) & & \\
\hline & 3 & Input function number error-2 protection & - & & \\
\hline & 4 & Output function number error-1 protection & \(\bigcirc\) & & \\
\hline & 5 & Output function number error-2 protection & - & & \\
\hline & 8 & Latch input allocation error protection & \(\bigcirc\) & & \\
\hline \multirow[t]{2}{*}{34} & 0 & Motor operable range setting error protection & \(\bigcirc\) & - & \\
\hline & 1 & One revolution absolute operable range error protection & \(\bigcirc\) & \(\bigcirc\) & \\
\hline 36 & 0 to 1 & EEPROM parameter error protection & & & \\
\hline 37 & 0 to 2 & EEPROM check code error protection & & & \\
\hline \multirow[t]{3}{*}{38} & 0 & Over-travel inhibit input protection 1 & & \(\bigcirc\) & \\
\hline & 1 & Over-travel inhibit input protection 2 & & \(\bigcirc\) & \\
\hline & 2 & Over-travel inhibit input protection 3 & - & & \\
\hline 40 & 0 & Absolute system failure protection & \(\bigcirc\) & ○(Note 2) & \\
\hline 41 & 0 & Absolute counter limit excess protection & \(\bigcirc\) & & \\
\hline 42 & 0 & Absolute overspeed protection & \(\bigcirc\) & ○(Note 2) & \\
\hline 44 & 0 & Single-turn counter error protection & \(\bigcirc\) & & \\
\hline 45 & 0 & Multi-turn counter error protection & \(\bigcirc\) & & \\
\hline 47 & 0 & Absolute status error protection & \(\bigcirc\) & & \\
\hline \multirow[t]{3}{*}{50} & 0 & External scale wiring error protection & \(\bigcirc\) & & \\
\hline & 1 & External scale communication error protection & \(\bigcirc\) & & \\
\hline & 2 & External scale communication data error protection & \(\bigcirc\) & & \\
\hline \multirow[t]{6}{*}{51} & 0 & External scale ST error protection 0 & \(\bigcirc\) & & \\
\hline & 1 & External scale ST error protection 1 & \(\bigcirc\) & & \\
\hline & 2 & External scale ST error protection 2 & \(\bigcirc\) & & \\
\hline & 3 & External scale ST error protection 3 & \(\bigcirc\) & & \\
\hline & 4 & External scale ST error protection 4 & \(\bigcirc\) & & \\
\hline & 5 & External scale ST error protection 5 & - & & \\
\hline 55 & 0 & Phase-A wiring error protection & \(\bigcirc\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Error No.} & \multirow[t]{2}{*}{Alarm name} & \multicolumn{3}{|c|}{Attribute} \\
\hline Main & Sub & & History & Can be cleared & Emergency stop \({ }^{(N o t e}\) 6) \\
\hline & 1 & Phase-B wiring error protection & \(\bigcirc\) & & \\
\hline & 2 & Phase-Z wiring error protection & - & & \\
\hline \multirow[t]{2}{*}{70} & 0 & Phase U current detector error protection & - & & \\
\hline & 1 & Phase W current detector error protection & \(\bigcirc\) & & \\
\hline 72 & 0 & Thermal relay error protection & - & & \\
\hline 80 & 3 & PLL incomplete error protection & - & - & \\
\hline 82 & 0 & RTEX node addressing error protection & - & & \\
\hline \multirow[t]{2}{*}{83} & 0 & RTEX continuous communication error protection 1 & - & - & - \\
\hline & 1 & RTEX continuous communication error protection 2 & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline \multirow[t]{3}{*}{84} & 0 & RTEX Communication timeout error protection & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline & 3 & RTEX communication synchronization error protection & - & & \\
\hline & 5 & RTEX communication cycle error protection & - & - & - \\
\hline \multirow[t]{2}{*}{85} & 0 & Retracting operation completion (I/O) \({ }^{(\text {Note 7) }}\) & - & (Note 8) & - \\
\hline & 2 & Retracting operation error \({ }^{(\text {Note 7) }}\) & - & (Note 8) & - \\
\hline \multirow[t]{3}{*}{86} & 0 & RTEX cyclic data error protection 1 & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline & 1 & RTEX cyclic data error protection 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline & 2 & RTEX update counter error protection & - & & \(\bigcirc\) \\
\hline \multirow[t]{3}{*}{87} & 0 & Forced alarm input protection & & \(\bigcirc\) & \(\bigcirc\) \\
\hline & 1 & Retracting operation completion (I/O) \({ }^{(\text {Note 7) }}\) & \(\bigcirc\) & (Note 8) & \(\bigcirc\) \\
\hline & 3 & Retracting operation error \({ }^{(\text {Note 7) }}\) & \(\bigcirc\) & (Note 8) & \(\bigcirc\) \\
\hline 90 & 2 & RTEX multi-axis synchronization establishment error protection & - & & \\
\hline \multirow[t]{2}{*}{91} & 1 & RTEX command error protection & \(\bigcirc\) & - & \\
\hline & 3 & RTEX command error protection 2 & \(\bigcirc\) & \(\bigcirc\) & \\
\hline \multirow[t]{3}{*}{92} & 0 & Encoder data restoration error protection & \(\bigcirc\) & & \\
\hline & 1 & External scale data restoration error protection & \(\bigcirc\) & & \\
\hline & 3 & Multi-turn data upper-limit value mismatch error protection & \(\bigcirc\) & & \\
\hline \multirow[t]{5}{*}{93} & 0 & Parameter setting error protection 1 & \(\bigcirc\) & & \\
\hline & 2 & Parameter setting error protection 2 & \(\bigcirc\) & & \\
\hline & 3 & External scale connection error protection & \(\bigcirc\) & & \\
\hline & 5 & Parameter setting error protection 4 & \(\bigcirc\) & & \\
\hline & 8 & Parameter setting error protection 6 & \(\bigcirc\) & & \\
\hline \multirow[t]{2}{*}{94} & 2 & Home return error protection & \(\bigcirc\) & \(\bigcirc\) & \\
\hline & 3 & Home return error protection 2 & \(\bigcirc\) & \(\bigcirc\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Error No.} & \multirow[t]{2}{*}{Alarm name} & \multicolumn{3}{|c|}{Attribute} \\
\hline Main & Sub & & History & Can be cleared & Emergency stop \({ }^{(N o t e ~ 6)}\) \\
\hline 95 & 0 to 4 & Motor automatic recognition error protection & & & \\
\hline \multirow[t]{6}{*}{96} & 2 & Control unit error protection 1 & - & & \\
\hline & 3 & Control unit error protection 2 & - & & \\
\hline & 4 & Control unit error protection 3 & - & & \\
\hline & 5 & Control unit error protection 4 & - & & \\
\hline & 6 & Control unit error protection 5 & \(\bigcirc\) & & \\
\hline & 7 & Control unit error protection 6 & \(\bigcirc\) & & \\
\hline \multirow[t]{3}{*}{98} & 1 & RTEX hardware error protection 1 & \(\bigcirc\) & & \\
\hline & 2 & RTEX hardware error protection 2 & \(\bigcirc\) & & \\
\hline & 3 & RTEX hardware error protection 3 & \(\bigcirc\) & & \\
\hline \multicolumn{2}{|l|}{Other numbers} & Other error protections & - & - & - \\
\hline
\end{tabular}
(Note 1) When Err 16.0 "Over-load protection" occurs, it can be cleared approx. 10 seconds after it occurs. The alarm clear command is received as is and clearing process takes place after it is ready to be cleared.
(Note 2) When Err 40.0 "Absolute system failure protection" or Err 42.0 "Absolute overspeed protection" occurs, the error cannot be cleared until absolute clear is performed.
(Note 3) When an alarm that cannot be cleared occurs, cycle the control power supply after removing the cause of the error or use RTEX software reset command to clear the alarm.
(Note 4) When an alarm that can be cleared occurs, use RTEX communication or USB communication (setup support software) to clear the alarm. Always clear the alarm while all axes are stopped and after securing safety.
(Note 5) If the internal control circuit of the servo amplifier malfunctions due to excessive noise etc., the display will be as shown below.

In such a case, immediately turn OFF the power.
(Note 6) Emergency stop refers to an alarm that is triggered if \(\operatorname{Pr} 5.10\) "Sequence at alarm" is set to 4 to 7 and that causes an immediate stop. For details, refer to the instruction manual and other technical references for the servo amplifier.
(Note 7) The alarm generated during retracting operation is switched by \(\operatorname{Pr} 6.86\) "Retreat operation alarm setup" bit 15.
Example: When bit \(15=0\), Err 85.0 and Err 85.2 will occur (A5N compatible specification).
When bit \(15=1\), Err 87.1 and Err 87.3 will occur (A6B compatible specification).
(Note 8) Whether alarm can be cleared or not is determined by the setting (bit 0 or 2) of \(\operatorname{Pr} 6.86\).
Bit 0: Err 85.0 / Err 87.1 (Retracting operation completion (I/O)) alarm clear attribute
Bit 2: Err 85.2 / Err 87.3 (Retracting operation error) alarm clear attribute; For either case, 0: Alarm clear invalid, 1: Alarm clear valid

\subsection*{11.2.3 Warning Codes}

\section*{ALARM_WARNING_CODES (Structure)}
\begin{tabular}{|l|l|l|}
\hline Member & Type & Description \\
\hline byMainCode & BYTE & Main code \\
\hline bySubCode & BYTE & Sub-code \\
\hline
\end{tabular}

\section*{- General warnings}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Warning No. \\
(hexade cimal)
\end{tabular}} & \multirow[t]{2}{*}{Warning name} & \multirow[t]{2}{*}{Description} & Warning latch & Output setting & Warning mask \\
\hline & & & \begin{tabular}{l}
Pr6.27 \\
(Note 1)
\end{tabular} & \[
\begin{gathered}
\hline \text { Pr4.40 I } \\
\text { Pr4.41 } \\
\text { (Note 2) }
\end{gathered}
\] & \begin{tabular}{l}
\[
\begin{gathered}
\hline \text { Pr6.38 / } \\
\text { Pr6.39 }
\end{gathered}
\] \\
Correspond ing bit \\
(Note 3)
\end{tabular} \\
\hline A0 & Overload warning Warning & Load factor is \(85 \%\) or more of the protection level. & \(\bigcirc\) & 1 & \[
\begin{gathered}
\text { Pr6. } 38 \\
\text { bit7 }
\end{gathered}
\] \\
\hline A1 & Overregeneration warning & Regenerative load factor has exceeded \(85 \%\) of the protection level. & \(\bigcirc\) & 2 & \[
\begin{gathered}
\text { Pr6. } 38 \\
\text { bit5 }
\end{gathered}
\] \\
\hline A2 & Battery warning (Note 4) & Battery voltage is 3.2 V or less. & Latch fixed & 3 & \[
\begin{gathered}
\hline \text { Pr6.38 } \\
\text { bit0 }
\end{gathered}
\] \\
\hline A3 & Fan warning & Fan has stopped for 1 second. & \(\bigcirc\) & 4 & \[
\begin{gathered}
\text { Pr6.38 } \\
\text { bit6 }
\end{gathered}
\] \\
\hline A4 & Encoder communication warning & The number of successive encoder communication errors has exceeded the specified value. & \(\bigcirc\) & 5 & \[
\begin{gathered}
\text { Pr6.38 } \\
\text { bit4 }
\end{gathered}
\] \\
\hline A5 & Encoder overheat warning & The encoder temperature exceeds the specified value. & \(\bigcirc\) & 6 & \[
\begin{gathered}
\hline \text { Pr6.38 } \\
\text { bit3 }
\end{gathered}
\] \\
\hline A6 & Oscillation detection warning & Oscillation state was detected. & \(\bigcirc\) & 7 & \[
\begin{gathered}
\text { Pr6.38 } \\
\text { bit13 }
\end{gathered}
\] \\
\hline A7 & Lifetime detection warning & The remaining life expectancy of a capacitor or a fan dropped below the specified value. & Latch fixed & 8 & \[
\begin{gathered}
\text { Pr6.38 } \\
\text { bit2 }
\end{gathered}
\] \\
\hline A8 & External scale error warning & The external scale detected a warning. & \(\bigcirc\) & 9 & \[
\begin{gathered}
\text { Pr6. } 38 \\
\text { bit8 }
\end{gathered}
\] \\
\hline A9 & External scale communication warning & The number of successive external scale communication errors has exceeded the specified value. & \(\bigcirc\) & 10 & \[
\begin{gathered}
\text { Pr6.38 } \\
\text { bit14 }
\end{gathered}
\] \\
\hline AC & Deterioration diagnosis warning (Note 6) & Load characteristic estimated value or torque command value at a constant velocity has exceeded the set range. & \(\bigcirc\) & 22 & \[
\begin{gathered}
\text { Pr6. } 39 \\
\text { bit7 }
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Extended warning}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Warning No. \\
(hexade cimal)
\end{tabular}} & \multirow[t]{2}{*}{Warning name} & \multirow[t]{2}{*}{Description} & Warning latch & Output setting & Warning mask \\
\hline & & & \begin{tabular}{l}
Pr6.27 \\
(Note 1)
\end{tabular} & \[
\begin{gathered}
\text { Pr4.40 I } \\
\text { Pr4.41 } \\
\text { (Note 2) }
\end{gathered}
\] & \begin{tabular}{l}
Pr6.38 / \\
Pr6.39 \\
Correspond ing bit \\
(Note 3)
\end{tabular} \\
\hline C0 & RTEX continuous communication error warning & \begin{tabular}{l}
The number of successive errors (CRC error) detected when reading the received data sent to the local node \\
The number of successive errors (CRC error) has exceeded the value set by Pr 7.26 "RTEX continuous communication error warning setup".
\end{tabular} & \(\bigcirc\) & 11 & \[
\begin{gathered}
\text { Pr6.38 } \\
\text { bit9 }
\end{gathered}
\] \\
\hline C1 & RTEX accumulated communication error warning & The number of successive errors (CRC error) detected when reading the received data sent to the local node has exceeded the value set by \(\operatorname{Pr} 7.27\) "RTEX accumulated communication error warning setup". & Latch fixed & 12 & \[
\begin{gathered}
\text { Pr6.38 } \\
\text { bit10 }
\end{gathered}
\] \\
\hline C2 & \begin{tabular}{l}
RTEX_ \\
Update_Counter error warning
\end{tabular} & The Update_Counter was not updated properly because the data accumulated exceeded the count value set by \(\operatorname{Pr} 7.28\) "RTEX_Update_Counter error warning setup". & Latch fixed & 13 & \[
\begin{gathered}
\hline \text { Pr6.38 } \\
\text { bit11 }
\end{gathered}
\] \\
\hline C3 & Main power OFF warning & When Pr 7.14 "Main power OFF warning detection time" was set to 10 to 1999, instantaneous power failure that occurred between L1 and L3 exceeded the time set by \(\operatorname{Pr} 7.14\). & - & 14 & \[
\begin{gathered}
\text { Pr6.38 } \\
\text { bit12 }
\end{gathered}
\] \\
\hline D2 & \begin{tabular}{l}
PANATERM \\
command execution warning
\end{tabular} & While bit 0 of \(\operatorname{Pr} 7.99\) "RTEX function enhancement setting 6 " was set to 1 and RTEX communication was established, an operation command (test run, FFT, etc.) was executed by the setup support software "PANATERM". & \(\bigcirc\) & 30 & \[
\begin{gathered}
\hline \text { Pr6.39 } \\
\text { bit8 }
\end{gathered}
\] \\
\hline
\end{tabular}
(Note 1) The symbol "○" marked in the "Warning latch" column indicates that it is possible to switch the mode between non-latch mode (latch for 1 second) and latch mode by using Pr 6.27 "Warning latch state setup". Only latch mode is available for the battery warning and the lifetime detection warning.
(Note 2) Select the warning output signal 1 (WARN 1) or warning output signal 2 (WARN 2) through Pr 4.40 "Warning output select 1 " or \(\operatorname{Pr} 4.41\) "Warning output select 2 ". When the set value is 0 , all warnings are Ored before being output. Do not use any settings other than the settings shown in the above table.
(Note 3) Each warning detection can be disabled by Pr 6.38 "Warning mask setting" or Pr 6.39 "Warning mask setting 2 ". The corresponding bits are shown in the table. Set the bit to 1 to disable the warning detection. For extended warning, warning detection can be disabled by parameter settings.
Also note that bit arrangements of these masks are different from those of general-purpose type MINAS-A6 series.
(Note 4) When the single-turn absolute function is enabled, a battery alarm is not detected.
(Note 5) Warning can be cleared by alarm clear. If warning cause is not resolved yet, the warning is cleared once, but a warning is issued again.
(Note 6) If bit 1 of \(\operatorname{Pr} 6.97\) "Function enhancement setup 3 " is set to 0 , it is disabled.

\subsection*{11.3 List of AMP Parameters}

\subsection*{11.3.1 Class 0: Basic Setting}
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{15}{*}{0} & 00 & Rotational direction setup & - & 0 to 1 \\
\hline & 01 & Control mode setup & - & 0 to 6 \\
\hline & 02 & Real-time auto-gain tuning setup & - & 0 to 6 \\
\hline & 03 & Selection of machine stiffness at real-time auto-gain tuning & - & 0 to 31 \\
\hline & 04 & Inertia ratio & \% & 0 to 10000 \\
\hline & 08 & Command pulse counts per one motor revolution & pulse & 0 to \(2^{23}\) \\
\hline & 09 & Numerator of electronic gear & - & 0 to \(2^{30}\) \\
\hline & 10 & Denominator of electronic gear & - & 1 to \(2^{30}\) \\
\hline & 11 & Number of output pulses per motor rotation & pulse/r & 1 to 2097152 \\
\hline & 12 & Reversal of pulse output logic / output source selection & - & 0 to 3 \\
\hline & 13 & 1st torque limit & \% & 0 to 500 \\
\hline & 14 & Position deviation excess setup & Command unit & 0 to \(2^{30}\) \\
\hline & 15 & Absolute encoder setup & - & 0 to 4 \\
\hline & 16 & External regenerative resistor setup & - & 0 to 3 \\
\hline & 17 & Load factor of external regenerative resistor selection & - & 0 to 4 \\
\hline
\end{tabular}

\subsection*{11.3.2 Class 1: Gain Adjustment}
\begin{tabular}{|l|l|l|l|l|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{6}{*}{1} & 00 & 1st gain of position loop & \(0.1 / \mathrm{s}\) & 0 to 30000 \\
\cline { 2 - 6 } & 01 & 1st gain of velocity loop & 0.1 Hz & 1 to 32767 \\
\cline { 2 - 6 } & 02 & \begin{tabular}{l}
1st time constant of velocity loop \\
integration
\end{tabular} & 0.1 ms & 1 to 10000 \\
\cline { 2 - 6 } & 03 & 1st filter of speed detection & - & 0 to 5 \\
\cline { 2 - 6 } & 04 & 1st time constant of torque filter & 0.01 ms & 0 to 2500 \\
\cline { 2 - 6 } & 05 & 2nd gain of position loop & \(0.1 / \mathrm{s}\) & 0 to 30000 \\
\cline { 2 - 6 } & 06 & 2nd gain of velocity loop & 0.1 Hz & 1 to 32767 \\
\cline { 2 - 6 } & 07 & \begin{tabular}{l}
2nd time constant of velocity loop \\
integration
\end{tabular} & 0.1 ms & 1 to 10000 \\
\cline { 2 - 6 } & 08 & 2nd filter of speed detection & - & 0 to 5 \\
\hline
\end{tabular}

\subsection*{11.3 List of AMP Parameters}
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow[t]{19}{*}{} & 09 & 2nd time constant of torque filter & 0.01 ms & 0 to 2500 \\
\hline & 10 & Velocity feed forward gain & 0.1\% & 0 to 4000 \\
\hline & 11 & Velocity feed forward gain & 0.1\% & 0 to 4000 \\
\hline & 12 & Velocity feed forward gain & 0.01 ms & 0 to 6400 \\
\hline & 13 & Torque feed forward filter & 0.01 ms & 0 to 6400 \\
\hline & 14 & 2nd gain setup & - & 0 to 1 \\
\hline & 15 & Mode of position control switching & - & 0 to 10 \\
\hline & 16 & Delay time of position control switching & 0.1 ms & 0 to 10000 \\
\hline & 17 & Level of position control switching & - & 0 to 20000 \\
\hline & 18 & Hysteresis at position control switching & - & 0 to 20000 \\
\hline & 19 & Position gain switching time & 0.1 ms & 0 to 10000 \\
\hline & 20 & Mode of velocity control switching & - & 0 to 5 \\
\hline & 21 & Delay time of velocity control switching & 0.1 ms & 0 to 10000 \\
\hline & 22 & Level of velocity control switching & - & 0 to 20000 \\
\hline & 23 & Hysteresis at velocity control switching & - & 0 to 20000 \\
\hline & 24 & Mode of torque control switching & - & 0 to 3 \\
\hline & 25 & Delay time of torque control switching & 0.1 ms & 0 to 10000 \\
\hline & 26 & Level of torque control switching & - & 0 to 20000 \\
\hline & 27 & Hysteresis at torque control switching & - & 0 to 20000 \\
\hline
\end{tabular}
11.3.3 Class 2: Vibration Suppression Function
\begin{tabular}{|l|l|l|l|l|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{6}{*}{2} & 00 & Adaptive filter mode setup & - & 0 to 6 \\
\cline { 2 - 6 } & 01 & 1st notch frequency & Hz & 50 to 5000 \\
\cline { 2 - 6 } & 02 & 1st notch width selection & - & 0 to 20 \\
\cline { 2 - 6 } & 03 & 1st notch depth selection & - & 0 to 99 \\
\cline { 2 - 6 } & 04 & 2nd notch frequency & Hz & 50 to 5000 \\
\cline { 2 - 6 } & 05 & 2nd notch width selection & - & 0 to 20 \\
\hline & 06 & 2nd notch depth selection & - & 0 to 99 \\
\hline & 07 & 3rd notch frequency & Hz & 50 to 5000 \\
\cline { 2 - 6 } & 08 & 3rd notch width selection & - & 0 to 20 \\
\cline { 2 - 6 } & 09 & 3rd notch depth selection & - & 0 to 99 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow[t]{21}{*}{} & 10 & 4th notch frequency & Hz & 50 to 5000 \\
\hline & 11 & 4th notch width selection & - & 0 to 20 \\
\hline & 12 & 4th notch depth selection & - & 0 to 99 \\
\hline & 13 & Selection of damping filter switching & - & 0 to 6 \\
\hline & 14 & 1st damping frequency & 0.1 Hz & 0 to 3000 \\
\hline & 15 & 1st damping filter setup & 0.1 Hz & 0 to 1500 \\
\hline & 16 & 2nd damping frequency & 0.1 Hz & 0 to 3000 \\
\hline & 17 & 2nd damping filter setup & 0.1 Hz & 0 to 1500 \\
\hline & 18 & 3rd damping frequency & 0.1 Hz & 0 to 3000 \\
\hline & 19 & 3rd damping filter setup & 0.1 Hz & 0 to 1500 \\
\hline & 20 & 4th damping frequency & 0.1 Hz & 0 to 3000 \\
\hline & 21 & 4th damping filter setup & 0.1 Hz & 0 to 1500 \\
\hline & 22 & Command smoothing filter & 0.1 ms & 0 to 10000 \\
\hline & 23 & Command FIR filter & 0.1 ms & 0 to 10000 \\
\hline & 24 & 5th notch frequency & Hz & 50 to 5000 \\
\hline & 25 & 5th notch width selection & - & 0 to 20 \\
\hline & 26 & 5th notch depth selection & - & 0 to 99 \\
\hline & 27 & 1st vibration control width setting & - & 0 to 1000 \\
\hline & 28 & 2nd vibration control width setting & - & 0 to 1000 \\
\hline & 29 & 3rd vibration control width setting & - & 0 to 1000 \\
\hline & 30 & 4th vibration control width setting & - & 0 to 1000 \\
\hline
\end{tabular}

\subsection*{11.3.4 Class 3: Speed, Torque Control, Full-closed Control}
\begin{tabular}{|l|l|l|l|l|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{6}{*}{3} & 12 & Acceleration time setting & \(\mathrm{ms} /(1000 \mathrm{r} / \mathrm{min})\) & 0 to 10000 \\
\cline { 2 - 6 } & 13 & Deceleration time setting & \(\mathrm{ms} /(1000 \mathrm{r} / \mathrm{min})\) & 0 to 10000 \\
\cline { 2 - 6 } & 14 & \begin{tabular}{l}
Sigmoid acceleration/ \\
deceleration time setup
\end{tabular} & ms & 0 to 10000 \\
\cline { 2 - 6 } & 17 & Speed limit selection & - & 0 to 1 \\
\cline { 2 - 5 } & 21 & Speed limit value 1 & \(\mathrm{r} / \mathrm{min}\) & 0 to 20000 \\
\cline { 2 - 5 } & 22 & Speed limit value 2 & \(\mathrm{r} / \mathrm{min}\) & 0 to 20000 \\
\cline { 2 - 5 } & 23 & External scale selection & - & 0 to 6 \\
\cline { 2 - 5 } & 24 & \begin{tabular}{l}
External scale numerator \\
of division
\end{tabular} & - & 0 to \(2^{23}\) \\
\cline { 2 - 5 } & 25 & \begin{tabular}{l}
External scale \\
denominator of division
\end{tabular} & - & 1 to \(2^{23}\) \\
\hline
\end{tabular}

\subsection*{11.3 List of AMP Parameters}
\begin{tabular}{|l|l|l|l|l|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{6}{*}{} & 26 & \begin{tabular}{l}
External scale reversal of \\
direction
\end{tabular} & - & 0 to 3 \\
\cline { 2 - 5 } & 27 & \begin{tabular}{l}
External scale Z phase \\
disconnection detection \\
disable
\end{tabular} & - & 0 to 1 \\
\cline { 2 - 6 } & 28 & \begin{tabular}{l}
Hybrid deviation excess \\
protection
\end{tabular} & Command unit & 1 to 227 \\
\cline { 2 - 6 } & 29 & \begin{tabular}{l}
Hybrid deviation clear \\
setting
\end{tabular} & Rotation & 0 to 100 \\
\cline { 2 - 6 } & 32 & \begin{tabular}{l}
External scale movement \\
judgment threshold at \\
virtual full-closed control \\
mode
\end{tabular} & External scale unit & 0 to 65534 \\
\hline
\end{tabular}
11.3.5 Class 4: I/O Monitor Setting
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{22}{*}{4} & 00 & SI1 input selection & - & 0 to 00FFFFFFFh \\
\hline & 01 & SI2 input selection & - & 0 to 00FFFFFFFh \\
\hline & 02 & SI3 input selection & - & 0 to 00FFFFFFFh \\
\hline & 03 & SI4 input selection & - & 0 to 00FFFFFFFh \\
\hline & 04 & SI5 input selection & - & 0 to 00FFFFFFFh \\
\hline & 05 & SI6 input selection & - & 0 to 00FFFFFFh \\
\hline & 06 & SI7 input selection & - & 0 to 00FFFFFFFh \\
\hline & 07 & SI8 input selection & - & 0 to 00FFFFFFFh \\
\hline & 10 & SO1 output selection & - & 0 to 00FFFFFFFh \\
\hline & 11 & SO2 output selection & - & 0 to 00FFFFFFFh \\
\hline & 12 & SO3 output selection & - & 0 to 00FFFFFFFh \\
\hline & 16 & Type of analog monitor 1 & - & 0 to 28 \\
\hline & 17 & Analog monitor 1 output gain & - & 0 to 214748364 \\
\hline & 18 & Type of analog monitor 2 & - & 0 to 28 \\
\hline & 19 & Analog monitor 2 output gain & - & 0 to 214748364 \\
\hline & 21 & Analog monitor output setup & - & 0 to 2 \\
\hline & 31 & Positioning complete range & Command unit & 0 to 2097152 \\
\hline & 32 & Positioning complete (In-position) output setup & - & 0 to 10 \\
\hline & 33 & INP hold time & ms & 0 to 30000 \\
\hline & 34 & Zero-speed & r/min & 10 to 20000 \\
\hline & 35 & Speed coincidence range & \(\mathrm{r} / \mathrm{min}\) & 10 to 20000 \\
\hline & 36 & At-speed (Speed arrival) & \(\mathrm{r} / \mathrm{min}\) & 10 to 20000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow[t]{19}{*}{} & 37 & Mechanical brake action at stalling setup & ms & 0 to 10000 \\
\hline & 38 & Mechanical brake action at running setup & ms & 0 to 32000 \\
\hline & 39 & Brake release speed setup & r/min & 30 to 3000 \\
\hline & 40 & Selection of alarm output 1 & - & 0 to 40 \\
\hline & 41 & Selection of alarm output 2 & - & 0 to 40 \\
\hline & 42 & 2nd Positioning complete (Inposition) range & Command unit & 0 to 2097152 \\
\hline & 44 & Position compare output pulse width setting & 0.1 ms & 0 to 32767 \\
\hline & 45 & Position compare output polarity select & - & 0 to 7 \\
\hline & 47 & Pulse output select & - & 0 to 1 \\
\hline & 48 & Position compare value 1 & Command unit & \[
\begin{array}{|l|}
\hline-2147483648 \text { to } \\
2147483647
\end{array}
\] \\
\hline & 49 & Position compare value 2 & Command unit & \[
\begin{array}{|l|}
\hline-2147483648 \text { to } \\
2147483647
\end{array}
\] \\
\hline & 50 & Position compare value 3 & Command unit & \[
\begin{aligned}
& \hline-2147483648 \text { to } \\
& 2147483647
\end{aligned}
\] \\
\hline & 51 & Position compare value 4 & Command unit & \[
\begin{aligned}
& \hline-2147483648 \text { to } \\
& 2147483647
\end{aligned}
\] \\
\hline & 52 & Position compare value 5 & Command unit & \[
\begin{array}{|l|}
\hline-2147483648 \text { to } \\
2147483647
\end{array}
\] \\
\hline & 53 & Position compare value 6 & Command unit & \[
\begin{array}{|l|}
\hline-2147483648 \text { to } \\
2147483647
\end{array}
\] \\
\hline & 54 & Position compare value 7 & Command unit & \[
\begin{aligned}
& \hline-2147483648 \text { to } \\
& 2147483647
\end{aligned}
\] \\
\hline & 55 & Position compare value 8 & Command unit & \[
\begin{aligned}
& \hline-2147483648 \text { to } \\
& 2147483647
\end{aligned}
\] \\
\hline & 56 & Position compare output delay compensation amount & 0.1 us & -32768 to 32767 \\
\hline & 57 & Position compare output assignment setting & - & \[
\begin{array}{|l|}
\hline-2147483648 \text { to } \\
2147483647
\end{array}
\] \\
\hline
\end{tabular}

\subsection*{11.3.6 Class 5: Enhancing Setting}
\begin{tabular}{|l|l|l|l|l|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{4}{*}{5} & 03 & \begin{tabular}{l}
Denominator of pulse \\
output division
\end{tabular} & - & 0 to 8388608 \\
\cline { 2 - 5 } & 04 & \begin{tabular}{l}
Over-travel inhibit input \\
setup
\end{tabular} & - & 0 to 2 \\
\cline { 2 - 5 } & 05 & \begin{tabular}{l}
Sequence at over-travel \\
inhibit
\end{tabular} & - & 0 to 2 \\
\hline
\end{tabular}

\subsection*{11.3 List of AMP Parameters}
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow[t]{25}{*}{} & 06 & Sequence at Servo-Off & - & 0 to 9 \\
\hline & 07 & Sequence at main power OFF & - & 0 to 9 \\
\hline & 08 & LV trip selection at main power OFF & - & 0 to 3 \\
\hline & 09 & Detection time of main power off & ms & 20 to 2000"11.3.9 Class 8: Special Setting 3" \\
\hline & 10 & Sequence at alarm & - & 0 to 7 \\
\hline & 11 & Torque setup for emergency stop & \% & 0 to 500 \\
\hline & 12 & Over-load level setup & \% & 0 to 500 \\
\hline & 13 & Over-speed level setup & r/min & 0 to 20000 \\
\hline & 14 & Motor working range setup & 0.1 revolution & 0 to 1000 \\
\hline & 15 & Control input signal read setting & - & 0 to 3 \\
\hline & 20 & Position setup unit select & - & 0 to 1 \\
\hline & 21 & Selection of torque limit & - & 0 to 4 \\
\hline & 22 & 2nd torque limit & \% & 0 to 500 \\
\hline & 23 & Torque limit switching setup 1 & ms/100 \% & 0 to 4000 \\
\hline & 24 & Torque limit switching setup 2 & ms/100 \% & 0 to 4000 \\
\hline & 25 & Positive direction torque limit & \% & 0 to 500 \\
\hline & 26 & Negative direction torque limit & \% & 0 to 500 \\
\hline & 31 & USB axis address & - & 0 to 127 \\
\hline & 33 & Pulse regenerative output limit setup & - & 0 to 1 \\
\hline & 45 & Quadrant projection positive direction compensation value & 0.1\% & -1000 to 1000 \\
\hline & 46 & Quadrant projection negative direction compensation value & 0.1\% & -1000 to 1000 \\
\hline & 47 & Quadrant projection compensation delay time & ms & 0 to 1000 \\
\hline & 48 & Quadrant projection compensation filter setting L & 0.01 ms & 0 to 6400 \\
\hline & 49 & Quadrant projection compensation filter setting H & 0.1 ms & 0 to 10000 \\
\hline & 56 & Slow stop deceleration time setting & \(\mathrm{ms} /(1000 \mathrm{r} / \mathrm{min})\) & 0 to 10000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow[t]{14}{*}{} & 57 & Slow stop S-shape acceleration and deceleration setting & ms & 0 to 1000 \\
\hline & 66 & Deterioration diagnosis convergence judgment time & 0.1 s & 0 to 10000 \\
\hline & 67 & Deterioration diagnosis inertia ratio upper limit & \% & 0 to 10000 \\
\hline & 68 & Deterioration diagnosis inertia ratio lower limit & \% & 0 to 10000 \\
\hline & 69 & Deterioration diagnosis unbalanced load upper limit & 0.1\% & -1000 to 1000 \\
\hline & 70 & Deterioration diagnosis unbalanced load lower limit & 0.1\% & -1000 to 1000 \\
\hline & 71 & Deterioration diagnosis dynamic friction upper limit & 0.1\% & -1000 to 1000 \\
\hline & 72 & Deterioration diagnosis dynamic friction lower limit & 0.1\% & -1000 to 1000 \\
\hline & 73 & Deterioration diagnosis viscous friction upper limit & 0.1\%/ (10000 r/min) & 0 to 10000 \\
\hline & 74 & Deterioration diagnosis viscous friction lower limit & 0.1\%/ (10000 r/min) & 0 to 10000 \\
\hline & 75 & Deterioration diagnosis velocity setting & r/min & -20000 to 20000 \\
\hline & 76 & Deterioration diagnosis torque average time & ms & 0 to 10000 \\
\hline & 77 & Deterioration diagnosis torque upper limit & 0.1\% & -1000 to 1000 \\
\hline & 78 & Deterioration diagnosis torque lower limit & 0.1\% & -1000 to 1000 \\
\hline
\end{tabular}
(Note 1) When using this setup value at a value smaller than the default value, confirm that it matches the user's power supply environment.

\subsection*{11.3.7 Class 6: Special Setting 1}
\begin{tabular}{|l|l|l|l|l|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{4}{*}{6} & 02 & Speed deviation excess setup & \(\mathrm{r} / \mathrm{min}\) & 0 to 20000 \\
\cline { 2 - 5 } & 05 & \begin{tabular}{l}
Position control 3rd gain effective \\
time
\end{tabular} & 0.1 ms & 0 to 10000 \\
\cline { 2 - 6 } & 06 & \begin{tabular}{l}
Position control 3rd gain scale \\
factor
\end{tabular} & \(\%\) & 50 to 1000 \\
\cline { 2 - 5 } & 07 & Additional value to torque command & \(\%\) & -100 to 100 \\
\hline
\end{tabular}

\subsection*{11.3 List of AMP Parameters}
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow[t]{30}{*}{} & 08 & Torque compensation value in positive direction & \% & -100 to 100 \\
\hline & 09 & Torque compensation value in negative direction & \% & -100 to 100 \\
\hline & 10 & Function expansion setup & - & -32768 to 32767 \\
\hline & 11 & Current response setup & \% & 10 to 100 \\
\hline & 14 & Immediate stop time at the time of alarming & ms & 1000 \\
\hline & 15 & 2nd over-speed level setup & r/min & 0 to 20000 \\
\hline & 18 & Power turn-on wait time & 0.1 s & 0 to 100 \\
\hline & 22 & A, B phase external scale pulse output method selection & - & 0 to 1 \\
\hline & 23 & Load fluctuation correction gain & \% & -100 to 100 \\
\hline & 24 & Load fluctuation correction filter & 0.01 ms & 10 to 2500 \\
\hline & 27 & Alarm latch time selection & - & 0 to 3 \\
\hline & 31 & Real time auto tuning estimation speed & - & 0 to 3 \\
\hline & 32 & Real time auto tuning custom setup & - & -32768 to 32767 \\
\hline & 34 & Hybrid vibration suppression gain & - & 0 to 30000 \\
\hline & 35 & Hybrid vibration suppression filter & 0.1/s & 0 to 32000 \\
\hline & 36 & Dynamic brake operation input setup & 0.01 ms & 0 to 1 \\
\hline & 37 & Oscillation detecting level & - & 0 to 1000 \\
\hline & 38 & Alarm mask setup & 0.1\% & -32768 to 32767 \\
\hline & 39 & Alarm mask setup 2 & - & -32768 to 32767 \\
\hline & 41 & 1st damping depth & - & 0 to 1000 \\
\hline & 42 & Two-stage torque filter time constant & - & 0 to 2500 \\
\hline & 43 & Two-stage torque filter damping term & 0.01 ms & 0 to 1000 \\
\hline & 47 & Function expansion settings 2 & -32768 to 32767 & -32768 to 32767 \\
\hline & 48 & Adjustment filter & 0 to 2000 & 0 to 2000 \\
\hline & 49 & Command response filter / adjustment filter damping term setting & 0 to 99 & 0 to 99 \\
\hline & 50 & Viscous friction compensation gain & 0.1\%/ (10000 r/min) & 0 to 10000 \\
\hline & 51 & Immediate stop completion wait time & ms & 0 to 10000 \\
\hline & 57 & Torque saturation error protection detection time & ms & 0 to 5000 \\
\hline & 60 & 2nd damping depth & - & 0 to 1000 \\
\hline & 61 & 1st resonance frequency & 0.1 Hz & 0 to 3000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow[t]{20}{*}{} & 62 & 1st resonance damping ratio & - & 0 to 1000 \\
\hline & 63 & 1st anti-resonance frequency & 0.1 Hz & 0 to 3000 \\
\hline & 64 & 1st anti-resonance damping ratio & - & 0 to 1000 \\
\hline & 65 & 1st response frequency & 0.1 Hz & 0 to 3000 \\
\hline & 66 & 2nd resonance frequency & 0.1 Hz & 0 to 3000 \\
\hline & 67 & 2nd resonance damping ratio & - & 0 to 1000 \\
\hline & 68 & 2nd anti-resonance frequency & 0.1 Hz & 0 to 3000 \\
\hline & 69 & 2nd anti-resonance damping ratio & - & 0 to 1000 \\
\hline & 70 & 2nd response frequency & 0.1 Hz & 0 to 3000 \\
\hline & 71 & 3rd damping depth & - & 0 to 1000 \\
\hline & 72 & 4th damping depth & - & 0 to 1000 \\
\hline & 73 & Load estimation filter & 0.01 ms & 0 to 2500 \\
\hline & 74 & Torque compensation frequency 1 & 0.1 Hz & 0 to 5000 \\
\hline & 75 & Torque compensation frequency 2 & 0.1 Hz & 0 to 5000 \\
\hline & 76 & Load estimation count & - & 0 to 8 \\
\hline & 85 & Retracting operation condition setting & - & -32768 to 32767 \\
\hline & 86 & Retracting operation alarm setting & - & -32768 to 32767 \\
\hline & 88 & Absolute multi-rotation data upper limit & - & 0 to 65534 \\
\hline & 97 & Function expansion setting 3 & - & \[
\begin{array}{|l|}
\hline-2147483648 \text { to } \\
2147483647
\end{array}
\] \\
\hline & 98 & Function expansion setting 4 & - & \[
\begin{array}{|l|}
\hline-2147483648 \text { to } \\
2147483647
\end{array}
\] \\
\hline
\end{tabular}

\subsection*{11.3.8 Class 7: Special Setting 2}
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{8}{*}{7} & 00 & Display on LED & - & 0 to 32767 \\
\hline & 01 & Display time setup upon power-up & 100 ms & -1 to 1000 \\
\hline & 03 & Output setup during torque limit & - & 0 to 1 \\
\hline & 09 & Correction time of latch delay 1 & 25 ns & -2000 to 2000 \\
\hline & 10 & Soft limit function & - & 0 to 3 \\
\hline & 11 & Positive side software limit value & Command unit & \[
\begin{array}{|l}
-1073741823 \text { to } \\
1073741823
\end{array}
\] \\
\hline & 12 & Negative side software limit value & Command unit & \[
\begin{array}{|l}
\hline-1073741823 \text { to } \\
1073741823
\end{array}
\] \\
\hline & 13 & Absolute home position offset & Command unit & \[
\begin{array}{|l}
\hline-1073741823 \text { to } \\
1073741823
\end{array}
\] \\
\hline
\end{tabular}

\subsection*{11.3 List of AMP Parameters}
\begin{tabular}{|c|c|c|c|c|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow[t]{29}{*}{} & 14 & Main power OFF warning detection time & ms & 0 to 2000 \\
\hline & 15 & Positioning adjacent range & Command unit & 0 to 1073741823 \\
\hline & 16 & Torque saturation error protection frequency & No. of times & 0 to 30000 \\
\hline & 20 & RTEX communication cycle setup & - & -1 to 12 \\
\hline & 21 & RTEX command updating cycle ratio setting & - & 1 to 2 \\
\hline & 22 & RTEX function extended setup 1 & - & -32768 to 32767 \\
\hline & 23 & RTEX function extended setup 2 & - & -32768 to 32767 \\
\hline & 24 & RTEX function extended setup 3 & - & -32768 to 32767 \\
\hline & 25 & RTEX speed unit setup & - & 0 to 1 \\
\hline & 26 & RTEX continuous error warning setup & No. of times & 0 to 32767 \\
\hline & 27 & RTEX accumulated error warning setup & No. of times & 0 to 32767 \\
\hline & 28 & RTEX_Update_Counter error warning setup & No. of times & 0 to 32767 \\
\hline & 29 & RTEX monitor select 1 & - & 0 to 32767 \\
\hline & 30 & RTEX monitor select 2 & - & 0 to 32767 \\
\hline & 31 & RTEX monitor select 3 & - & 0 to 32767 \\
\hline & 32 & RTEX monitor select 4 & - & 0 to 32767 \\
\hline & 33 & RTEX monitor select 5 & - & 0 to 32767 \\
\hline & 34 & RTEX monitor select 6 & - & 0 to 32767 \\
\hline & 35 & RTEX command setting 1 & - & 0 to 2 \\
\hline & 36 & RTEX command setting 2 & - & 0 to 2 \\
\hline & 37 & RTEX command setting 3 & - & 0 to 2 \\
\hline & 38 & RTEX_Update_Counter error protection setup & No. of times & 0 to 32767 \\
\hline & 41 & RTEX function extended setup 5 & - & -32768 to 32767 \\
\hline & 78 & Signal reading setting for latch trigger with stop function & - & 0 to 3 \\
\hline & 91 & RTEX communication cycle extended setup & ns & 0 to 2000000 \\
\hline & 92 & Correction time of latch delay 2 & 25 ns & -2000 to 2000 \\
\hline & 93 & Home return limit speed & r/min & 0 to 20000 \\
\hline & 95 & Number of RTEX continuous communication error protection 1 detections & No. of times & 0 to 17 \\
\hline & 96 & Number of RTEX continuous communication error protection 2 detections & No. of times & 0 to 17 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{7}{*}{} & 97 & \begin{tabular}{l}
Number of RTEX communication \\
timeout error protection detections
\end{tabular} & No. of times & 0 to 17 \\
\cline { 2 - 6 } & 98 & \begin{tabular}{l}
Number of RTEX cyclic data error \\
protection \(1 / 2\) detections
\end{tabular} & No. of times & 0 to 17 \\
\cline { 2 - 6 } & 99 & RTEX function extended setup 6 & - & -32768 to 32767 \\
\cline { 2 - 6 } & 108 & \begin{tabular}{l}
RTEX communication \\
synchronization setup
\end{tabular} & - & 0 to 7 \\
\cline { 2 - 6 } & 110 & RTEX function extended setup 7 & - & -2147483648 to \\
\cline { 2 - 6 } & 111 & \begin{tabular}{l}
Trigger signal allocation setting of \\
latch mode with stop function
\end{tabular} & - & 0 to 64 \\
\cline { 2 - 6 } & 112 & \begin{tabular}{l}
Selection of RTEX communication \\
status flag
\end{tabular} & - & 0 to 1 \\
\hline
\end{tabular}

\subsection*{11.3.9 Class 8: Special Setting 3}
\begin{tabular}{|l|l|l|l|l|}
\hline Class & No. & Parameter name & Unit & Setting range \\
\hline \multirow{6}{*}{8} & 01 & Profile linear acceleration constant & \begin{tabular}{l}
10000 Command unit/s \\
2
\end{tabular} & 1 to 429496 \\
\cline { 2 - 7 } & 04 & Profile linear deceleration constant & \begin{tabular}{l}
10000 Command unit/s \\
2
\end{tabular} & 1 to 429496 \\
\cline { 2 - 6 } & 10 & \begin{tabular}{l}
Amount of travel after profile \\
position latch detection
\end{tabular} & Command unit & \begin{tabular}{l}
-1073741823 to \\
1073741823
\end{tabular} \\
\cline { 2 - 6 } & 12 & \begin{tabular}{l}
Profile home return position mode \\
setup
\end{tabular} & - & 0 to 1 \\
\cline { 2 - 6 } & 13 & Profile home return velocity 1 & \begin{tabular}{l}
Command unit/s or \\
r/min
\end{tabular} & 0 to 2147483647 \\
\cline { 2 - 6 } & 14 & Profile home return velocity 2 & \begin{tabular}{l}
Command unit/s or \\
r/min
\end{tabular} & 0 to 2147483647 \\
\hline & 17 & \begin{tabular}{l}
Relative movement of retracting \\
operation
\end{tabular} & Command unit & -2147483648 to \\
\hline & Retracting operation speed & \begin{tabular}{l}
Command unit/s or \\
r/min
\end{tabular} & 0 to 2147483647 \\
\hline
\end{tabular}

\subsection*{11.4 Monitor Commands}

These commands are specified with RTEX_ReadAmpData (amplifier monitor).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Type_Code (Note 1) (Note 3)} & \multicolumn{2}{|l|}{Name} & \multirow[t]{2}{*}{\begin{tabular}{l}
Index \\
(Note 2)
\end{tabular}} & \multirow[t]{2}{*}{Unit} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Description}} \\
\hline \[
\begin{aligned}
& \text { A4N } \\
& \text { comp } \\
& \text { atible }
\end{aligned}
\] & Stand ard & & & & & & \\
\hline \multirow[t]{5}{*}{101h} & \multirow[t]{5}{*}{01h} & \multirow[t]{5}{*}{Position deviation} & \multirow[t]{5}{*}{PERR} & \multirow[t]{5}{*}{\[
\begin{gathered}
0 \\
(1,2)
\end{gathered}
\]} & \multirow[t]{5}{*}{Command unit} & \multicolumn{2}{|l|}{\begin{tabular}{l}
<In position control mode> \\
Position deviation \\
<In full-closed control mode> \\
External scale deviation \\
* The computation method (reference) of position deviation and external scale deviation is set in bit 14 of \(\operatorname{Pr} 7.23\) "Command position deviation output switching".
\end{tabular}} \\
\hline & & & & & & \[
\begin{aligned}
& \text { r7.23 } \\
& \text { bit14 }
\end{aligned}
\] & Computation method of positional deviation \\
\hline & & & & & & 0 & Deviation from the command after filtering \\
\hline & & & & & & 1 & Deviation from the command before filtering \\
\hline & & & & & & \multicolumn{2}{|l|}{\begin{tabular}{l}
<In speed / torque control mode> Undefined \\
Note: Although the same data is returned whether Index is 1 or 2 , use Index \(=0\).
\end{tabular}} \\
\hline 102h & 02h & Encoder resolution & - & 0 & pulse/r & \multicolumn{2}{|l|}{Encoder resolution of the motor connected} \\
\hline 104h & 04h & \begin{tabular}{l}
Command position \\
(after filtering)
\end{tabular} & MPOS & 0 & Command unit & \multicolumn{2}{|l|}{Command position (after filtering)} \\
\hline \multirow[t]{4}{*}{105h} & \multirow[t]{4}{*}{05h} & \multirow[t]{4}{*}{Actual speed} & \multirow[t]{4}{*}{ASPD} & \multirow[t]{4}{*}{0} & \multirow[t]{4}{*}{Set the unit through Pr 7.25.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Motor actual speed \\
* Set the unit through Pr 7.25 "RTEX speed unit setup".
\end{tabular}} \\
\hline & & & & & & Pr7.25 & Unit \\
\hline & & & & & & 0 & [r/min] \\
\hline & & & & & & 1 & [Command unit/s] \\
\hline 106h & 06h & Internal command torque & TRQ & 0 & 0.1\% & Command & que to motor \\
\hline - & 07h & Actual position & APOS & 0 & Command unit & Motor actu * Position closed mo & position he external scale in full- \\
\hline - & 08h & Internal command position (before filtering) & IPOS & 0 & Command unit & Internal co & and position before filtering \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Type_Code (Note 1) (Note 3)} & \multicolumn{2}{|l|}{Name} & \multirow[t]{2}{*}{\begin{tabular}{l}
Index \\
(Note 2)
\end{tabular}} & \multirow[t]{2}{*}{Unit} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Description}} \\
\hline A4N comp atible & Stand ard & & & & & & \\
\hline - & 09h & Latch position 1 & LPOS1 & 0 & Command unit & \multicolumn{2}{|l|}{Motor actual position latched in CH 1} \\
\hline - & OAh & Latch position 2 & LPOS2 & 0 & Command unit & \multicolumn{2}{|l|}{Motor actual position latched in CH 2} \\
\hline \multirow[t]{5}{*}{-} & \multirow[t]{5}{*}{0Ch} & \multirow[t]{5}{*}{\begin{tabular}{l}
Command velocity \\
(after filtering)
\end{tabular}} & \multirow[t]{5}{*}{MSPD} & \multirow[t]{5}{*}{0} & \multirow[t]{5}{*}{Set the unit through Pr 7.25.} & \multicolumn{2}{|l|}{Command velocity after filtering * Set the unit through Pr 7.25 "RTEX speed unit setup".} \\
\hline & & & & & & Pr7. 25 & Unit \\
\hline & & & & & & 0 & [r/min] \\
\hline & & & & & & 1 & [Command unit/s] \\
\hline & & & & & & * The value mode. & fined in torque control \\
\hline - & 0Dh & External scale position \({ }^{(N o t e ~ 4)}\) & EXPOS & 0 & \begin{tabular}{l}
Pulse \\
(External scale)
\end{tabular} & External sca & tion \\
\hline
\end{tabular}
(Note 1) When a Type_Code error occurs, command error (0031h) will be returned.
Manufacturer will use a Type_Code not listed above.
When a Type_Code used by the manufacturer is set, undefined value will be returned in place of command error (0031h).
(Note 2) When an Index error occurs, command error (0032h) will be returned.
(Note 3) A4N compatible: Type_Code compatible with A4N series can be used, but only with main commands.
Standard: Type_Code newly created for A5N and A5N series and can be used with both main commands and subcommands. When using with main commands, set leftmost 4 bits to 0 .
* Although the product supports the A4N compatible Typer_Code to maintain compatibility, basically use the standard Type_Code.
(Note 4) The version before the function extended version 1 is not supported.
\begin{tabular}{|c|c|l|c|c|c|l|}
\hline \multicolumn{2}{|c|}{ Type_Code } & \multicolumn{2}{|c|}{ Name } & Index & Unit & \multicolumn{1}{|c|}{ Description } \\
\cline { 1 - 2 } \begin{tabular}{c}
A4N \\
comp \\
atible
\end{tabular} & \begin{tabular}{c}
Stand \\
ard
\end{tabular} & & & & \\
\hline 111 h & 11 h & \begin{tabular}{l}
Regenerative \\
load ratio
\end{tabular} & - & 0 & \begin{tabular}{c}
\(\%\) \\
(Note 2)
\end{tabular} & \begin{tabular}{l}
Ratio of the regenerative overload \\
protection to the alarm occurrence level
\end{tabular} \\
\hline 112 h & 12 h & Overload ratio & - & 0 & \(0.1 \%\) & \begin{tabular}{l}
Ratio of the actual load to the rated motor \\
load
\end{tabular} \\
\hline- & 21 h & \begin{tabular}{l}
Logical input \\
signal
\end{tabular} & - & 0 & - & Logic level of input signal \\
\hline- & 22 h & \begin{tabular}{l}
Logical output \\
signal
\end{tabular} & - & 0 & - & Logic level of output signal \\
\hline- & 23 h & \begin{tabular}{l}
Logical input \\
signal
\end{tabular} & - & 0 & - & \begin{tabular}{l}
Logic level of input signal (expansion \\
portion)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Type_Code} & \multicolumn{2}{|l|}{Name} & \multirow[t]{2}{*}{Index} & \multirow[t]{2}{*}{Unit} & \multirow[t]{2}{*}{Description} \\
\hline A4N comp atible & Stand ard & & & & & \\
\hline & & (expansion portion) & & & & \\
\hline - & 24h & Logical output signal (expansion portion) & - & 0 & - & Logic level of output signal (expansion portion) \\
\hline - & 25h & Physical input signal & - & 0 & - & Physical level of input signal \\
\hline - & 26h & Physical output signal & - & 0 & - & Physical level of output signal \\
\hline 131h & 31h & Inertia ratio & - & 0 & \% & The ratio of load inertia to the motor's rotor inertia (equivalent of value in Pr 0.04) Inertia ratio \(=(\) load inertia \(/\) rotor inertia) \(\times 100\) \\
\hline 132h & 32h & Automatic motor recognition & - & 0 & - & \begin{tabular}{l}
0 : Invalid \\
1: Valid
\end{tabular} \\
\hline 133h & 33h & Cause of no revolution & - & 0 & - & The number which shows the cause that the motor is not running. \\
\hline 134h & 34h & Warning flags & - & 0 & - & \begin{tabular}{l}
The flag that shows the state of the waring currently occurring. \\
* The corresponding bit is set to 1 to activate the flag (showing warning status).
\end{tabular} \\
\hline - & 37h & Multiple alarm occurrences /Warning information \({ }^{(\text {Note } 1)}\) & - & Refer to Section 6-9-6. & - & Information of all the alarms or warnings currently occurring \\
\hline 201h & 41h & Mechanical angle (Single turn data) & - & 0 & pulse & \begin{tabular}{l}
The mechanical angle (one revolution data of an absolute encoder) of the motor \\
* The polarity is fixed and data increases at CCW rotation. \\
One revolution data \(=0\) to (Encoder resolution-1)
\end{tabular} \\
\hline 202h & 42h & Electrical angle & - & 0 & \(0.7031^{\circ}\) & \begin{tabular}{l}
Motor electrical angle \\
* The polarity is fixed and data increases at CCW rotation. \\
Electrical angle \(=0\) to 1FF [Hex]
\end{tabular} \\
\hline - & 43h & Multi-turn data & - & 0 & Turn & Multi-turn data of the absolute encoder * In the incremental mode (\(\operatorname{Pr} 0.15=1\)), multi-turn data becomes an indefinite value. \\
\hline - & 44h & Encoder status (Note 1) & - & 0 & - & The status of the encoder \\
\hline - & 47h & Encoder pulse & - & 0 & pulse & The sum of encoder feedback pulses \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Type_Code} & \multicolumn{2}{|l|}{Name} & \multirow[t]{2}{*}{Index} & \multirow[t]{2}{*}{Unit} & \multirow[t]{2}{*}{Description} \\
\hline A4N comp atible & Stand ard & & & & & \\
\hline & & sum \({ }^{(N o t e ~ 1) ~}\) & & & & \\
\hline - & 48h & External scale pulse sum \({ }^{\text {(Note 1) }}\) & - & 0 & \begin{tabular}{l}
Pulse \\
(External scale)
\end{tabular} & The sum of external scale feedback pulses \\
\hline - & 49h & External scale absolute position \({ }^{(N o t e ~ 1)}\) & - & 0 & \begin{tabular}{l}
Pulse \\
(External scale)
\end{tabular} & The absolute position of the external scale \\
\hline - & 61h & Power on cumulative time & - & - & 30 min & \begin{tabular}{l}
Cumulative on-time of control power to the servo amplifier \\
* Because the power ON time is recored in unit of 30 minutes, a turn-on period shorter than 30 minutes is not recorded in the cumulative on-time. \\
not recorded in the cumulative on-time.
\end{tabular} \\
\hline
\end{tabular}
(Note 1) The version before the function extended version 1 is not supported.
(Note 2) Be careful that the unit is different from that used for A4N and A5N. (A4N, A5N: [0.1\%], A6N: [\%]) * With the function extended version 3 or higher, the unit can be changed through bit 7 of \(\operatorname{Pr} 7.99\).

Pr7. 99 bit7 0: [\%], 1: [0.1\%]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Type_Code} & \multicolumn{2}{|l|}{Name} & \multirow[t]{2}{*}{Index} & \multirow[t]{2}{*}{Unit} & \multirow[t]{2}{*}{Description} \\
\hline A4N comp atible & Stand ard & & & & & \\
\hline - & 62h & Servo amplifier temperature & - & - & \({ }^{\circ} \mathrm{C}\) & Temperature inside the servo amplifier \\
\hline - & 63h & Encoder temperature & - & - & \({ }^{\circ} \mathrm{C}\) & \begin{tabular}{l}
Temperature inside the encoder \\
* Applicable only to 23-bit encoder. 0 for unsupported encoder.
\end{tabular} \\
\hline - & 64h & Number of inrush resistance relay operations & - & - & Cycle & \begin{tabular}{l}
Operating cycles of inrush current suppression resistor relay \\
* Saturation will occur at maximum value of 40000000 h . \\
* Because the power ON time is recored in unit of 30 minutes, a turn-on period shorter than 30 minutes is not recorded in the cumulative cycles.
\end{tabular} \\
\hline - & 65h & No. of dynamic brake operations & - & - & Cycle & \begin{tabular}{l}
Number of operations of dynamic brake relay \\
* Saturation will occur at maximum value of 40000000 h . \\
* Because the power ON time is recored in unit of 30 minutes, a turn-on period shorter than 30 minutes is not recorded in the cumulative time.
\end{tabular} \\
\hline - & 66h & Fan operating time & - & - & 30 min & \begin{tabular}{l}
Operating time of cooling fan \\
* Because the power ON time is recored in unit of 30 minutes, a turn-on period
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Type_Code} & \multicolumn{2}{|l|}{Name} & \multirow[t]{2}{*}{Index} & \multirow[t]{2}{*}{Unit} & \multirow[t]{2}{*}{Description} \\
\hline A4N comp atible & Stand ard & & & & & \\
\hline & & & & & & \begin{tabular}{l}
shorter than 30 minutes is not recorded in the cumulative time. \\
* 0 when no fan is installed.
\end{tabular} \\
\hline - & 67h & Fan life expectancy & - & - & 0.1\% & \begin{tabular}{l}
Percent of fan life expectancy \\
* Because the power ON time is recored in unit of 30 minutes, a turn-on period shorter than 30 minutes is not recorded in the cumulative time. \\
* 0 when no fan is installed.
\end{tabular} \\
\hline - & 68h & Capacitor life expectancy & - & - & 0.1\% & \begin{tabular}{l}
Percent of life expectancy of main power source capacitor \\
* Because the power ON time is recored in unit of 30 minutes, a turn-on period shorter than 30 minutes is not recorded in the cumulative time.
\end{tabular} \\
\hline - & 69h & Voltage across PN & - & - & V & Main power source PN voltage \\
\hline - & 6Ch & \begin{tabular}{l}
Consumed power of motor \\
(Note 1)
\end{tabular} & - & - & W & Momentary power consumption of the motor \\
\hline - & 6Dh & Motor power consumption (Note 1) & - & - & Wh & Power consumption of the motor \\
\hline - & 6Eh & \begin{tabular}{l}
Cumulative motor power consumption \\
(Note 1)
\end{tabular} & - & - & Wh & Cumulative value of motor power consumption \\
\hline 401h & 71h & \begin{tabular}{l}
RTEX \\
Cumulative communication errors
\end{tabular} & - & 0 & Cycle & \begin{tabular}{l}
Cumulative number of RTEX communication errors \\
* Saturation will occur at maximum value of FFFFh. \\
The count will be cleared upon restarting of servo amplifier or resetting of control power source.
\end{tabular} \\
\hline - & 77h & \begin{tabular}{l}
RTEX \\
UpdateCounter cumulative error count \({ }^{(\text {Note 1) }}\)
\end{tabular} & - & 0 & Cycle & \begin{tabular}{l}
Cumulative number of communication errors of RTEX UpdateCounter \\
* Saturation will occur at maximum value of 7FFFh. \\
The count will be cleared upon restarting of servo amplifier or resetting of control power source.
\end{tabular} \\
\hline - & 78h & RTEX communication Cumulative RTEX communication timeout errors \({ }^{(\text {Note } 1)}\) & - & 0 & Cycle & \begin{tabular}{l}
Cumulative number of RTEX communication data reception interruption errors \\
* Saturation will occur at maximum value of FFFFh. \\
The count will be cleared upon restarting of servo amplifier or resetting of control power source.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|c|c|c|l|}
\hline \multicolumn{2}{|c|}{ Type_Code } & \multicolumn{2}{|c|}{ Name } & Index & Unit & \multicolumn{1}{c|}{ Description } \\
\cline { 1 - 2 } \begin{tabular}{c}
A4N \\
comp \\
atible
\end{tabular} & \begin{tabular}{c}
Stand \\
ard
\end{tabular} & & - & 0 & Cycle & \begin{tabular}{l}
Cumulative number of communication \\
errors between encoders \\
*Saturation will occur at maximum value \\
of FFFFh. \\
The count will be cleared upon restarting \\
of servo amplifier or resetting of control \\
power source.
\end{tabular} \\
\hline 411 h & 81 h & \begin{tabular}{l}
Encoder \\
cumulative \\
communication \\
errors
\end{tabular} & & & & \\
\hline
\end{tabular}
(Note 1) The version before the function extended version 1 is not supported.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Type_Code} & \multicolumn{2}{|l|}{} & Index & Unit & Description \\
\hline A4N comp atible & Stand ard & \multicolumn{2}{|l|}{Name} & & & \\
\hline 413h & 83h & External scale cumulative communication errors \({ }^{\text {(Note }} 1\)) & - & 0 & Cycle & \begin{tabular}{l}
Cumulative number of communication errors between external scales \\
* Saturation will occur at maximum value of FFFFh. \\
The count will be cleared upon restarting of servo amplifier or resetting of control power source.
\end{tabular} \\
\hline - & 84h & External scale abnormal communication data errors (Note 1) & - & 0 & Cycle & \begin{tabular}{l}
Cumulative number of communication data errors in communication between external scales \\
* Saturation will occur at maximum value of FFFFh. \\
The count will be cleared upon restarting of servo amplifier or resetting of control power source.
\end{tabular} \\
\hline - & 85h & For manufacturer's use & - & - & - & - \\
\hline - & 86h & Hybrid position deviation (Note 1) & - & - & Command unit & Tolerance between encoder position and external scale position \\
\hline - & 87h & External scale data(Note 1) (Leftmost 24 bits) & - & 0 & Pulse (External scale) & Rightmost 24 bits of external scale data \\
\hline - & 88h & External scale data(Note 1) (Rightmost 24 bits) & - & 0 & \begin{tabular}{l}
Pulse \\
(External scale)
\end{tabular} & \begin{tabular}{l}
<Virtual full-close control mode function disabled> \\
Leftmost 24 bits of external scale data is output. \\
<Virtual full-close control mode function enabled> \\
- When an AB-phase output type scale is connected, position data (16 bits) is output that is set to 0 when the power is turned ON. Note that it is not affected by Pr 3.26 Reversal of direction.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{11.4 Monitor Commands}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Type_Code} & \multicolumn{2}{|l|}{Name} & \multirow[t]{2}{*}{Index} & \multirow[t]{2}{*}{Unit} & \multirow[t]{2}{*}{Description} \\
\hline A4N comp atible & Stand ard & & & & & \\
\hline & & & & & & - When a serial incremental scale is connected, position data (24 bits) of the serial incremental scale is output. Note that the data output is position data affected by Pr 3.26 Reversal of direction. \\
\hline - & 89h & External scale status \({ }^{(N o t e ~ 1)}\) & - & 0 & - & Status of external scale \\
\hline - & A1h & Velocity control command (Note 1) & - & 0 & r/min & Velocity control command \\
\hline - & A5h & Internal position command speed \({ }^{(\text {Note } 1)}\) & - & 0 & r/min & Internal position command speed \\
\hline - & A6h & Speed deviation(Note 3) & - & 0 & r/min & Speed deviation \\
\hline - & A8h & Positive direction torque limit value \({ }^{\text {(Note 1) }}\) & - & 0 & 0.05\% & Positive direction torque limit value \\
\hline - & A9h & Negative direction torque limit (Note 1) & - & 0 & 0.05\% & Negative direction torque limit value \\
\hline - & AAh & Speed limit value (Note 1) & - & 0 & r/min & Speed limit value \\
\hline - & ABh & Gain switching flag (Note 1) & - & 0 & - & Gain switching flag \\
\hline - & B1h & Deterioration diagnosis state (Note 1) & - & 0 & - & Deterioration diagnosis state \\
\hline - & B2h & Deterioration diagnosis torque average time (Note 1) & - & 0 & \[
\begin{gathered}
0.1 \% \\
(\text { Note 2) }
\end{gathered}
\] & Deterioration diagnosis torque command average time \\
\hline - & B3h & Deterioration diagnosis torque command standard value (Note 3) & - & 0 & 0.1\% & Deterioration diagnosis torque command standard value \\
\hline - & B4h & Deterioration diagnosis inertia ratio estimate \({ }^{(\text {Note } 1)}\) & - & 0 & \% & Deterioration diagnosis inertia ratio estimate \\
\hline
\end{tabular}
(Note 1) The version before the function extended version 1 is not supported.
(Note 2) Be careful that the unit is different from the one of the data displayed on the setup support software (PANATERM).
(Note 3) The version before the function extended version 2 is not supported.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Type_Code} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Name}} & \multirow[t]{2}{*}{Index} & \multirow[t]{2}{*}{Unit} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{Description}} \\
\hline A4N comp atible & Stand ard & & & & & & & \\
\hline - & B5h & Deterioration diagnosis unbalanced load estimate (Note 1) & - & 0 & 0.1\% *2) & \multicolumn{3}{|l|}{Deterioration diagnosis unbalanced load estimate} \\
\hline - & B6h & \begin{tabular}{l}
Deterioration diagnosis unbalanced load estimate \\
(Note 1)
\end{tabular} & - & 0 & 0.1\% *2) & \multicolumn{3}{|l|}{Deterioration diagnosis unbalanced load estimate} \\
\hline - & B7h & Deterioration diagnosis unbalanced load estimate (Note 1) & - & 0 & \[
\begin{gathered}
0.1 \% / \\
(10000 \mathrm{r} \\
\min) \\
\left.{ }^{*} 2\right)
\end{gathered}
\] & \multicolumn{3}{|l|}{Deterioration diagnosis unbalanced load estimate} \\
\hline \multirow[t]{9}{*}{-} & \multirow[t]{9}{*}{FAh} & \multirow[t]{9}{*}{Monitor flag (Note 1)} & \multirow[t]{9}{*}{-} & \multirow[t]{9}{*}{0} & \multirow[t]{9}{*}{-} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Various flag information of the servo amplifier \\
The contents of Monitor_Data, the response data, are as follows.
\end{tabular}} \\
\hline & & & & & & Byte & bit & Description \\
\hline & & & & & & 12, 20 & 7 to 0 & For manufacturer's use \\
\hline & & & & & & 13, 21 & 7 to 0 & For manufacturer's use \\
\hline & & & & & & 14, 22 & 7 to 6 & For manufacturer's use \\
\hline & & & & & & & 5 & \begin{tabular}{l}
Semi-closed / fullclosed selection state \\
0: Semi-closed \\
1: Full-closed
\end{tabular} \\
\hline & & & & & & & 4 & \begin{tabular}{l}
Incremental / absolute selection state \\
0 : Incremental mode \\
1: Absolute mode
\end{tabular} \\
\hline & & & & & & & 3 to 0 & For manufacturer's use \\
\hline & & & & & & 15, 23 & 7 to 0 & For manufacturer's use \\
\hline
\end{tabular}
(Note 1) The version before the function extended version 2 is not supported.
(MEMO)

\section*{Revision History}

The manual code is shown at the bottom of the cover page.
\begin{tabular}{|l|l|l|}
\hline Date of issue & Manual No. & Revision details \\
\hline February 2021 & WUME-GM1PGR-01 & First edition \\
\hline
\end{tabular}
(MEMO)
(MEMO)```

